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Introduction and Motivations

Introduction and Motivations
Who are we?

Gauthier Picard, PhD, Hab.
ONERA, the French Aerospace Lab

Expertises: DCOPs, self-organization,
resource allocation

Filippo Bistaffa, PhD
IIIA-CSIC, Barcelona

Expertises: coalition formation,
parallel computing, shared mobility
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Introduction and Motivations

Introduction and Motivations
Multiagent Systems

Agent: An entity that behaves autonomously in the
pursuit of goals

Multi-agent system: A system of multiple
interacting agents

An agent is...

Autonomous: Is of full control of itself

Interactive: May communicate with other agents

Reactive: Responds to changes in the
environment or requests by other agents

Proactive:Takes initiatives to achieve its goals
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Introduction and Motivations

Introduction and Motivations
Research questions addressed during this tutorial

How to make collective optimal decisions?

I How to model the collective decision?

I Which protocols to implement these decisions?

How to form groups wrt to some utility criteria?

I How to model the utility of each group?

I How to express which groups are feasible or not?
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Today’s Menu
Introduction and Motivations

Distributed Constraint Optimization
Motivating Examples
Preliminaries
DCOP Model
DCOP Algorithms
Extensions

Coalition Formation on MAS
Characteristic Function Games
Coalition Structure Generation

Real-World Applications
Self-configuration of IoT Devices
Observation Scheduling in Multi-Owner Constellations
Shared Mobility
Collective Energy Purchasing
pyDCOP: a python Library for DCOPs

Conclusion and Wrap-up
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Distributed Constraint Optimization

Today’s Menu

Introduction and Motivations

Distributed Constraint Optimization
Motivating Examples
Preliminaries
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DCOP Algorithms
Extensions
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Real-World Applications
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Distributed Constraint Optimization

Motivating example
Sensor networks

x1 x2

x3 x4

x5 x6
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Distributed Constraint Optimization

Motivating example
Sensor networks

x1

x3

x5

x1 x2

x3 x4

x5 x6

x1 x3 x5 Sat?
N N N 7

N N E 7

. . . 7

S W N 3

. . . 7

W W W 7

Model the problem
as a CSP!
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Distributed Constraint Optimization

CSP
Constraint Satisfaction

Variables X = {x1, . . . , xn}
Domains D = {D1, . . . , Dn}
Constraints C{c1, . . . , cm}
where a constraint ci ⊆ Di1 ×Di2 × . . .×Din denotes the possible valid joint
assignments for the variables xi1 , xi1 , . . . , xin it involves

Goal: Find an assignment to all variables that satisfies all the constraints

Gauthier Picard, Filippo Bistaffa Multi-Agent Distributed Constrained Optimization 8



Distributed Constraint Optimization

CSP
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Distributed Constraint Optimization

Max-CSP
Max Constraint Satisfaction

x1
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x5
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x4

x6

x1 x3 x5 Sat?
N N N 7

N N E 7

. . . 7

S W N 3

. . . 7

W W W 7

Model the problem
as a Max-CSP!
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Distributed Constraint Optimization

Max-CSP
Max Constraint Satisfaction

Variables X = {x1, . . . , xn}
Domains D = {D1, . . . , Dn}
Constraints C{c1, . . . , cm}
where a constraint ci ⊆ Di1 ×Di2 × . . .×Din denotes the possible valid joint
assignments for the variables xi1 , xi1 , . . . , xin it involves

Goal: Find an assignment to all variables that satisfies a maximum number of
constraints
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Distributed Constraint Optimization

Max-CSP
Max Constraint Satisfaction

x1

x3

x5
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x4

x6

x1 x3 x5 Sat?
N N N 7

N N E 7
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Distributed Constraint Optimization

WCSP (or COP)
Constraint Optimization

x1

x3

x5

x2

x4

x6

x1 x3 x5 Cost
N N N ∞
N N E ∞

. . . ∞
S W N 10

. . . ∞
W W W ∞

Model the problem
as a COP!
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Distributed Constraint Optimization

WCSP (or COP)
Constraint Optimization

Variables X = {x1, . . . , xn}
Domains D = {D1, . . . , Dn}
Constraints C{c1, . . . , cm}
where a constraint ci : Di1 ×Di2 × . . .×Din → R+ ∪ {∞} expresses the degree of
constraint violation

Goal: Find an assignment to all variables that minimizes the sum of all the constraints
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Distributed Constraint Optimization

Constraint Reasoning

CSP Max-CSP

COP

Hard constraints to Soft
constraints

Objective: minimize cost

Objective: maximize
#constraints satisfied
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Distributed Constraint Optimization

WCSP (or COP)
Constraint Optimization

x1

x3

x5

x2

x4

x6

Imagine that each sensor is an
autonomous agent

How should this problem be modeled
and solved in a decentralized

manner?
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Distributed Constraint Optimization

DCOP
Distributed Constraint Optimization [MODI et al., 2005]
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Imagine that each sensor is an
autonomous agent

How should this problem be modeled
and solved in a decentralized

manner?
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Distributed Constraint Optimization

DCOP
Distributed Constraint Optimization [MODI et al., 2005]

x1

x3

x5
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x4

x6
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Distributed Constraint Optimization

DCOP
Distributed Constraint Optimization [MODI et al., 2005]

Agents X = {a1, . . . , al}
Variables X = {x1, . . . , xn}
Domains D = {D1, . . . , Dn}
Constraints C{c1, . . . , cm}
Mapping of variables to agents

Goal: Find an assignment to all variables that minimizes the sum of all the constraints
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Distributed Constraint Optimization

DCOP
Distributed Constraint Optimization [MODI et al., 2005]

CSP Max-CSP

COP

Hard constraints to Soft
constraints

Objective: minimize cost

Objective: maximize
#constraints satisfied
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Distributed Constraint Optimization

DCOP
Distributed Constraint Optimization [MODI et al., 2005]

CSP Max-CSP

COP DCOP

Variables are controlled by agents

Communication model

Local knowledge
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Distributed Constraint Optimization

DCOP Algorithms
See [FIORETTO et al., 2018]

Search

Inference

Search

Inference

Search

Sampling

Search

Inference

Synchronous

Synchronous

Asynchronous

Synchronous

Asynchronous

Partially
decentralized

Fully
decentralized

Fully
decentralized

Complete

Incomplete
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Distributed Constraint Optimization

DCOP Algorithms
See [FIORETTO et al., 2018]

Search

Inference

Search

Inference

Search

Sampling

Search

Inference

Synchronous

Synchronous

Asynchronous

Synchronous

Asynchronous

Partially
decentralized

Fully
decentralized

Fully
decentralized

Complete

Incomplete

Important metrics

Agent complexity

Network loads

Message size

Anytime

Quality guarantees

Execution time vs. solution
quality
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Distributed Constraint Optimization

DCOP Algorithms
See [FIORETTO et al., 2018]

Search

Inference

Search

Inference

Search

Sampling

Search

Inference

Synchronous

Synchronous

Asynchronous

Synchronous

Asynchronous

Partially
decentralized

Fully
decentralized

Fully
decentralized

Complete

Incomplete

Systematic process,
divided in steps

Each agent waits for
particular messages before
acting

Consistent view of the
search process

Typically, increases
idle-time

Gauthier Picard, Filippo Bistaffa Multi-Agent Distributed Constrained Optimization 21



Distributed Constraint Optimization

DCOP Algorithms
See [FIORETTO et al., 2018]

Search

Inference

Search

Inference

Search

Sampling

Search

Inference

Synchronous

Synchronous

Asynchronous

Synchronous

Asynchronous

Partially
decentralized

Fully
decentralized

Fully
decentralized

Complete

Incomplete

Decision based on agents’
local state

Agents’ actions do not
depend on sequence of
received messages

Minimizes idle-time

No guarantees on validity
of local views
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Distributed Constraint Optimization

DCOP Algorithms
See [FIORETTO et al., 2018]

Search

Inference

Search

Inference

Search

Sampling

Search

Inference

Synchronous

Synchronous

Asynchronous

Synchronous

Asynchronous

Partially
decentralized

Fully
decentralized

Fully
decentralized

Complete

Incomplete

Synchronous
Branch-and-Bound
(SBB)
[HIRAYAMA and YOKOO, 1997]
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Distributed Constraint Optimization

Synchronous Branch-and-Bound (SBB)
[HIRAYAMA and YOKOO, 1997]

A

B

C

D

{�,�}

{�,�}

{�,�}

{�,�}

xi xj (A,B) (A,C) (B,C) (B,C)

5 5 5 3
8 10 4 8
20 20 3 10
3 3 3 3

How do we solve this distributedly?
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Distributed Constraint Optimization

Synchronous Branch-and-Bound (SBB)
[HIRAYAMA and YOKOO, 1997]
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How do we solve this distributedly?
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Distributed Constraint Optimization

Synchronous Branch-and-Bound (SBB)
[HIRAYAMA and YOKOO, 1997]

Agents operate on a complete ordering

Agents exchange CPA messages
containing partial assignments

When a solution is found, its solution cost
as an UB is broadcasted to all agents

The UB is used for branch pruning

Complete ordering

A

B

C

D

{�,�}

{�,�}

{�,�}

{�,�}
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Distributed Constraint Optimization

Synchronous Branch-and-Bound (SBB)
[HIRAYAMA and YOKOO, 1997]
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Distributed Constraint Optimization

Synchronous Branch-and-Bound (SBB)
[HIRAYAMA and YOKOO, 1997]
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Distributed Constraint Optimization

Synchronous Branch-and-Bound (SBB)
[HIRAYAMA and YOKOO, 1997]
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Distributed Constraint Optimization

Synchronous Branch-and-Bound (SBB)
[HIRAYAMA and YOKOO, 1997]

SBB
Correct

Yes
the solution it finds is optimal

Complete
Yes

it terminates

Message complexity O(d)
max size of messages

Network load O(bd)
max number of messages

Runtime O(bd)
how long it takes

branching factor = b
num variables = d
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Distributed Constraint Optimization

Synchronous Branch-and-Bound (SBB)
[HIRAYAMA and YOKOO, 1997]
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Distributed Constraint Optimization

Synchronous Branch-and-Bound (SBB)
[HIRAYAMA and YOKOO, 1997]
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A

Can we speed this up by
parallelizing some computations?

Hint: Are there independent or conditionally
independent subproblems?
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Distributed Constraint Optimization

Synchronous Branch-and-Bound (SBB)
[HIRAYAMA and YOKOO, 1997]
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Distributed Constraint Optimization

Synchronous Branch-and-Bound (SBB)
[HIRAYAMA and YOKOO, 1997]
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These computations are the same

independent of C!
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Distributed Constraint Optimization

Pseudo-Tree

A

B

C

D

{�,�}

{�,�}

{�,�}

{�,�}

A

B

C D

{�,�}

{�,�}

{�,�} {�,�}

Definition (Pseudo-Tree)

A spanning tree of the constraint graph such that no two nodes in sibling subtrees share a
constraint in the constraint graph
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Pseudo-Tree
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Distributed Constraint Optimization

DCOP Algorithms
See [FIORETTO et al., 2018]

Search

Inference

Search

Inference

Search

Sampling

Search

Inference

Synchronous

Synchronous

Asynchronous

Synchronous

Asynchronous

Partially
decentralized

Fully
decentralized

Fully
decentralized

Complete

Incomplete

Distributed Pseudotree
Optimization Procedure
(DPOP)
[PETCU and FALTINGS, 2005b]
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Distributed Constraint Optimization

DPOP
[PETCU and FALTINGS, 2005b]

Extension of the Bucket Elimination
(BE)

Agents operate on a pseudo-tree
ordering

UTIL phase: Leaves to root

VALUE phase: Root to leaves

A

B

C D

{�,�}

{�,�}

{�,�} {�,�}

UTIL

VALUE
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Distributed Constraint Optimization

DPOP
[PETCU and FALTINGS, 2005b]

B D (B,D)
r r 3

min{3, 8} = 3
r g 8
g r 10

min{10, 3} = 3
g g 3

Message to B
B cost
r 3
g 3

A

B

C D

{�,�}

{�,�}

{�,�} {�,�}

UTIL D
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Distributed Constraint Optimization

DPOP
[PETCU and FALTINGS, 2005b]

A B C (B,C) (A,C) cost
r r r 5 5 10
r r g 4 8 12
r g r 3 5 8
r g g 3 8 11
g r r 5 10 15
g r g 4 3 7
g g r 3 10 13
g g g 3 3 6

Message to B
A B cost
r r 10
r g 8
g r 7
g g 6

A

B

C D

{�,�}

{�,�}

{�,�} {�,�}

UTIL C
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Distributed Constraint Optimization

DPOP
[PETCU and FALTINGS, 2005b]

A B (A,B) Util C Util D cost
r r 5 10 53 18
r g 8 8 3 19
g r 20 7 3 30
g g 3 6 3 12

Message to A
A cost
r 18
g 12

A

B

C D

{�,�}

{�,�}

{�,�} {�,�}

UTIL

B
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Distributed Constraint Optimization

DPOP
[PETCU and FALTINGS, 2005b]

A cost
r 18
g 12

optimal cost = 12

A

B

C D

{�,�}

{�,�}

{�,�} {�,�}

UTIL

A
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Distributed Constraint Optimization

DPOP
[PETCU and FALTINGS, 2005b]

A cost
r 18
g 12

Select value for A = g

Send MSG "A = g" to agents B and C

A

B

C D

{�,�}

{�,�} {�,�}

VALUEA {�,�}
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Distributed Constraint Optimization

DPOP
[PETCU and FALTINGS, 2005b]

A B (A,B) Util C Util D cost
r r 5 10 53 18
r g 8 8 3 19
g r 20 7 3 30
g g 3 6 3 12

Select value for B = g

Send MSG "B = g" to agents C and D

A

B

C D

{�,�} {�,�}

VALUE{�,�}

B {�,�}
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Distributed Constraint Optimization

DPOP
[PETCU and FALTINGS, 2005b]

A B C (B,C) (A,C) cost
r r r 5 5 10
r r g 4 8 12
r g r 3 5 8
r g g 3 8 11
g r r 5 10 15
g r g 4 3 7
g g r 3 10 13
g g g 3 3 6

Select value for C = g

A

B

C D

{�,�}

VALUE{�,�}

{�,�}

C

{�,�}
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Distributed Constraint Optimization

DPOP
[PETCU and FALTINGS, 2005b]

B D (B,D)
r r 3

min{3, 8} = 3
r g 8
g r 10

min{10, 3} = 3
g g 3

Select value for D = g

A

B

C D

VALUE{�,�}

{�,�}

{�,�}

D

{�,�}
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Distributed Constraint Optimization

DPOP
[PETCU and FALTINGS, 2005b]

SBB DPOP
Correct

Yes Yes
the solution it finds is optimal

Complete
Yes Yes

it terminates

Message complexity O(d) O(bd)
max size of messages

Network load O(bd) O(d)
max number of messages

Runtime O(bd) O(bd)
how long it takes

branching factor = b
num variables = d
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Distributed Constraint Optimization

DCOP Algorithms
See [FIORETTO et al., 2018]

Search

Inference

Search

Inference

Search

Sampling

Search

Inference

Synchronous

Synchronous

Asynchronous

Synchronous

Asynchronous

Partially
decentralized

Fully
decentralized

Fully
decentralized

Complete

Incomplete
Distributed Local Search
[MAHESWARAN et al., 2004; ZHANG

et al., 2003]
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Distributed Constraint Optimization

Local Search Algorithms

DSA: Distributed Stochastic Search [ZHANG et al.,

2005]

MGM: Maximum Gain Messages Algorithm
[MAHESWARAN et al., 2004]

Note: we now maximize utilities

Every agent individually decides whether to
change its value or not
Decision involves
I knowing neighbors’ values
I calculation of utility gain by changing values
I probabilities

A B C

{�,�} {�,�} {�,�}

xi xj (A,B) (B,C)

5 5
5 0
0 0
8 8
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Distributed Constraint Optimization

DSA Algorithm
[ZHANG et al., 2005]

All agents execute the following
I Randomly choose a value
I while (termination is not met)

I if (a new value is assigned): send the new value to neighbors
I collect neighbors’ new values if any
I select and assign the next value based on assignment rule
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Distributed Constraint Optimization

DSA Algorithm
[ZHANG et al., 2005]

A B C

{�,�} {�,�} {�,�}

xi xj (A,B) (B,C)

5 5
5 0
0 0
8 8
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Distributed Constraint Optimization

DSA Algorithm
[ZHANG et al., 2005]

A B CA B C

� U = 5,∆ = −3

� U = 0,∆ = 0

� U = 0,∆ = 0

� U = 8,∆ = 8

� U = 10,∆ = 5

� U = 5,∆ = 0

U = 5 U = 0

xi xj (A,B) (B,C)

5 5
5 0
0 0
8 8
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Distributed Constraint Optimization

DSA Algorithm
[ZHANG et al., 2005]

A B CA B C

� U = 5,∆ = −3

� U = 0,∆ = 0

� U = 0,∆ = 0

� U = 8,∆ = 8

� U = 10,∆ = 2

� U = 8,∆ = 0

U = 8 U = 0

xi xj (A,B) (B,C)

5 5
5 0
0 0
8 8
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Distributed Constraint Optimization

DSA Algorithm
[ZHANG et al., 2005]

A B CA B C

� U = 5,∆ = 5

� U = 0,∆ = 0

� U = 0,∆ = 0

� U = 16,∆ = 16

� U = 5,∆ = 5

� U = 0,∆ = 0

U = 0 U = 0

xi xj (A,B) (B,C)

5 5
5 0
0 0
8 8
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Distributed Constraint Optimization

DSA Algorithm
[ZHANG et al., 2005]

A B CA B C

� U = 0,∆ = −8

� U = 8,∆ = 0

� U = 0,∆ = −16

� U = 16,∆ = 0

� U = 0,∆ = −8

� U = 8,∆ = 0

U = 0 U = 0

xi xj (A,B) (B,C)

5 5
5 0
0 0
8 8
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Distributed Constraint Optimization

MGM Algorithm
[MAHESWARAN et al., 2004]

All agents execute the following
I Randomly choose a value
I while (termination is not met)

I if (a new value is assigned): send the new value to neighbors
I collect neighbors’ new values if any
I calculate gain and send it to neighbors
I collect neighbors’ gains
I if (it has the highest gain among all neighbors): change value to the value that maximizes gain

Large Great if you need an anytime algorithm!
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Distributed Constraint Optimization

MGM vs DSA

Figure: MGM Figure: DSA
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Distributed Constraint Optimization

Extensions to the DCOP Framework
Dynamic DCOPs
I SDPOP [PETCU and FALTINGS, 2005a], I-ADOPT and I-BnB-ADOPT [YEOH et al., 2011], FMS

[RAMCHURN et al., 2010]

Multi-Objective DCOPs
I MO-SBB [MEDI et al., 2014], Pseudo-tree Based Algorithm [MATSUI et al., 2012], B-MOMS

[DELLE FAVE et al., 2011], DP-AOF [OKIMOTO et al., 2013]

Asymetric DCOPs
I SyncABB-2ph, SyncABB-1ph, ACLS, MCS-MGM [GRINSHPOUN et al., 2013]

Probabilistic DCOPs
I E[DPOP] and SD-DPOP [LÉAUTÉ and FALTINGS, 2011; NGUYEN et al., 2012], U-GDL

[STRANDERS et al., 2011]

Continuous DCOPs
I CMS [STRANDERS et al., 2009], HCMS [VOICE et al., 2010], PFD [CHOUDHURY et al., 2020],

EC-DPOP, AC-DPOP, CAC-DPOP, C-DSA [HOANG et al., 2020], C-CoCoA [SARKER et al.,
2021]

...
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Coalition Formation on MAS

Today’s Menu

Introduction and Motivations

Distributed Constraint Optimization

Coalition Formation on MAS
Characteristic Function Games
Coalition Structure Generation

Real-World Applications

Conclusion and Wrap-up
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Coalition Formation on MAS

Characteristic Function Games (CFGs)
[CHALKIADAKIS et al., 2011]

Set of Agents A

A = { , , , }

Characteristic Function v(·)

v({ , }) = 0

v({ , , }) = −7

v({ , }) = 3

. . .
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Coalition Formation on MAS

Characteristic Function
[CHALKIADAKIS et al., 2011]

Characteristic Function

The function v : P(A)→ R associates a value to every coalition (i.e., subset) of A

Exponential Complexity

Representing v(·) as a table requires an exponential number of steps (i.e., 2|A|)

Mitigate this Complexity

(1) Restrict the set of coalitions or (2) consider v(·) with a specific structure
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Coalition Formation on MAS

Cardinality-Restricted CFGs
[SHEHORY and KRAUS, 1998]

Maximum Cardinality k

E.g., only coalitions of size ≤ 3 are feasible

Polynomial Number of Coalitions

Total number of coalitions is
∑k

i=1

(|A|
i

)
= O(|A|k),

i.e., polynomial wrt |A|
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Coalition Formation on MAS

Graph-Restricted CFGs
[MYERSON, 1977], [DEMANGE, 2004]

Graph G among Agents

G = ({ , , , }, {( , ), ( , ), ( , )})

Connected Subgraphs

A coalition is feasible only if it induces a connected
subgraph of G
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Coalition Formation on MAS

Real-World Example: Social Ridesharing
[BISTAFFA et al., 2017a]

Social Ridesharing

Arrange cost-effective shared cars among agents connected by a social network

Cardinality-Based Constraints

Cars (i.e., coalitions) can contain up to 5 passengers

Graph-Based Constraints

We only form coalitions among “friends of friends” (connected subgraph)
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Coalition Formation on MAS
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Coalition Formation on MAS

S3

S2

S1

S1 = { , }
S2 = { , }
S3 = { , }

v(·) = transportation
cost of route through

start and destination points
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Coalition Formation on MAS

Coalition Structure Generation (CSG)
[RAHWAN et al., 2015]

Solving the Coalition Structure Generation (CSG) Problem

Compute the partition S of A into feasible coalitions that maximizes the sum
∑

S∈S v(S)
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Coalition Formation on MAS

CSG Approaches based on Search
[BISTAFFA et al., 2017b]

Edge Contraction Operation

Contraction of edge (Si, Sj)→ form coalition Si ∪ Sj
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Coalition Formation on MAS
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Coalition Formation on MAS

CSG Approaches based on Search
[BISTAFFA et al., 2017b]

CFSS Algorithm

Builds a Binary Decision Diagram (BDD) by contracting (or not) an edge at each step

Each coalition structure (i.e., partition of A) is represented only once in the BDD

The optimal coalition structure is computed by doing a depth-first traversal of the BDD

Pros

Approximate algorithm with quality guarantees if used in conjunction with Branch-and-Bound

Cons

Performance depends on the assumption that v(·) can be expressed in closed-form
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Coalition Formation on MAS

CSG Approaches based on Integer Linear Programming
Background on Integer Linear Programming

Weighted Knapsack Problem

We want to fill our knapsack (capacity = c) with the goal of maximizing the total value

What is the Optimal Subset of Object for c = 5?

A Pick (weight = 1)→ 1 w
( )

= 1, v
( )

= 1

B Pick (weight = 2)→ 4 w
( )

= 2, v
( )

= 4

C Pick (weight = 4)→ 3 w
( )

= 4, v
( )

= 3

D Pick (weight = 5)→ 9 w
( )

= 6, v
( )

= 1

E Pick (weight = 3)→ 6 w
( )

= 3, v
( )

= 6
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Coalition Formation on MAS

CSG Approaches based on Integer Linear Programming
Background on Integer Linear Programming

Our Ingredients

Let xA, xB, xC , xD, xE be binary decision variables (either pick the object or not)

Objective function: maximize the value of selected objects

Constraint: do not exceed the knapsack capacity

Integer Linear Programming (ILP) Formulation

maximize 1 · xA + 4 · xB + 3 · xC + 9 · xD + 6 · xE (Values of selected objects)

subject to 1 · xA + 2 · xB + 4 · xC + 5 · xD + 3 · xE ≤ 5 (Capacity constraint)

xA, xB, xC , xD, xE ∈ {0, 1} (Binary decision variables)
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Coalition Formation on MAS

CSG Approaches based on Integer Linear Programming
[RAHWAN et al., 2015]

Given A and a set S of coalitions (i.e., subsets) of A, let M be a |A| × |S| matrix

MiS = 1 if and only if agent a ∈ A is part of coalition S ∈ S, MiS = 0 otherwise

M =

{
}

{
}

{
}

{
,
}

{
,
}

{
,
}

{
,

,
}


1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1
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Coalition Formation on MAS

CSG Approaches based on Integer Linear Programming
[RAHWAN et al., 2015]

Objective of Coalition Structure Generation

Compute the partition of A that maximizes the sum of the corresponding values

ILP Formulation for Coalition Structure Generation

maximize
∑

S∈S
v(S) · xS (Value of each selected coalition)

subject to
∑

S∈S
MiS · xS = 1 ∀i ∈ A (Each agent exactly in one coalition)
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Coalition Formation on MAS

CSG Approaches based on Integer Linear Programming
[RAHWAN et al., 2015]

Solving Integer Linear Programs

ILPs can be solved with state-of-the-art solvers like CPLEX (very mature technology)

Pros

Does not require any assumption on v(·) (very general approach)

Cons

Memory requirements can become unmanageable for more than 20–30 agents

Difficult to directly exploit the structure of the problem (i.e., graph)
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Difficult to directly exploit the structure of the problem (i.e., graph)
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Coalition Formation on MAS

CSG as a COP
[BISTAFFA and FARINELLI, 2018]

Graph-Restricted CFG Example

Pseudotree among Agents (Hierarchy)

Adjacent agents in the graph fall in the same branch of the tree (e.g., and )
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Coalition Formation on MAS

CSG as a COP
[BISTAFFA and FARINELLI, 2018]

Challenge

How can we exploit the structure (i.e., hierarchy among agents)?

Main Idea

Each coalition (i.e., decision variable) is “controlled” by the highest agent

“Delegate” the formation of coalitions to descendants by means of required variables

x1 x13 x123 x1234 x12 x124 x134 x14

x23 x2

x3

x4

X1

X2

X3

X4
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Coalition Formation on MAS

CSG as a COP
[BISTAFFA and FARINELLI, 2018]

Required Variables

Any two variables that require the same variable cannot be enabled simultaneously

As a result no overlapping variables are activated at the same time

Number of Constraints

Naive COP:
(# coalitions

2

)
This approach: linear wrt the number of agents

Open Question

Can we make this COP a Distributed COP (DCOP)?
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Real-World Applications

Today’s Menu

Introduction and Motivations

Distributed Constraint Optimization

Coalition Formation on MAS

Real-World Applications
Self-configuration of IoT Devices
Observation Scheduling in Multi-Owner Constellations
Shared Mobility
Collective Energy Purchasing
pyDCOP: a python Library for DCOPs

Conclusion and Wrap-up
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Real-World Applications

SECP model
Smart Environment Configuration Problem [RUST et al., 2016]

Example of applying DCOPs to a "real"
problem

Coordinate objects in the building
Model
I objects
I relations between objects and

environment
I user objectives and requirements

Formulate the problem as an optimization
problem
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Real-World Applications

SECP model
Smart Environment Configuration Problem [RUST et al., 2016]

Focus on smart lighting use cases

Objects: anything that can produce light: light bulbs, windows with rolling shutter, etc.

User preferences: having a predefined luminosity level in a room, under some
conditions

Energy efficiency

Linking objects and user preferences:

How to model the luminosity in a room ? variable

How to model the dependency between the light sources and the luminosity ? function /
constraint
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Real-World Applications

SECP model
Example application to ambient intelligence scenario

Actuators
I Connected light bulbs, TV, Rolling shutters, ...

Sensors
I Presence detector, Luminosity Sensor, etc.

Physical Dependency Models
I E.g. Living-room light model

User Preferences
I Expressed as rules :

IF presence_living_room = 1

AND light_sensor_living_room < 60

THEN light_level_living_room ← 60

AND shutter_living_room ← 0
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Real-World Applications

SECP model
Example application to ambient intelligence scenario

Actuators
I Decision variable xi, domain Dxi

I Cost function ci : Dxi
→ R

Sensors
I Read-only variable sl, domain Dsl

Physical Dependency Models 〈yj , φj〉
I Give the expected state of the environment from a set of

actuator-variables influencing this model
I Variable yj representing the expected state of the

environment
I Function φj :

∏
ς∈σ(φj)

Dς → Dyj
User Preferences
I Utility function uk
I Distance from the current expected state to the target state of

the environment
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Real-World Applications

Formulating SECP as a DCOP
Multi-objective optimization problem

min
xi∈ν(A)

∑
i∈A

ci and max
xi∈ν(A)

yj∈ν(Φ)

∑
k∈R

uk

s.t. φj(x1
j , . . . , x

φj
j ) = yj ∀yj ∈ ν(Φ)

Mono-objective DCOP formulation

max
xi∈ν(A)

yj∈ν(Φ)

ωu
∑
k∈R

uk − ωc
∑
i∈A

ci +
∑
ϕj∈Φ

ϕj

ϕj(x
1
j , . . . , x

|σ(φj)|
j , yj) =

{
0 if φj(x

1
j , . . . , x

|σ(φj)|
j ) = yj

−∞ otherwise
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Real-World Applications

Formulating SECP as a DCOP
Representing a DCOP as a factor graph

x1

x2

x3

c1

c2

c3

ϕ1 y1 u1

s1
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Real-World Applications

SECP Factor Graph
in a house (without rules)

Desk

Living
Room

TV
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Entrance

Stairs

ld1
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llv1ltv1

ltv2 ltv3

lk1 lk2
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Real-World Applications

Algorithms’ performances
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Best solutions: DPOP, MaxSum, MGM2

Worst runtime: DPOP

Best compromise: MaxSum, MGM2
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Real-World Applications

SECP: further readings

Experiments with various algorithms [RUST et al., 2016, 2022]

How to deploy DCOPs [RUST et al., 2017, 2022]

How to adapt deployment at runtime [RUST et al., 2018, 2020, 2022]
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Real-World Applications
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Real-World Applications

Observation Scheduling in Multi-Owner Constellations [PICARD, 2022]

Increasing size of deployed EOS
constellations

⇒ Observe any point on Earth at higher
frequency, e.g. Planet constellation

but, requires to improve coordination and
cooperation between assets and
stakeholders

We focus here on collective observation
scheduling on a constellation where
some users have exclusive access to
some orbit portions

⇒ Answer to strong user expectations to
benefit both from a shared system (to
reduce costs) and a proprietary system
(total control and confidentiality)
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Real-World Applications

Scheduling Observations with Multiple Exclusive Orbit Portions
Illustrative Example
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Real-World Applications

DCOP Model
A DCOP 〈A,X ,D, C, µ〉 is defined for a given request r, and a current scheduling

The agents are the exclusive users which can potentially schedule r:

A = {u ∈ Uex|∃(s, (tstart
u , tend

u )) ∈ eu,∃o ∈ θr s.t. so = s, [tstart
u , tend

u ]∩[tstart
o , tend

o ] 6= ∅}
(1)

Each agent u owns binary decision variables, one for each observation o ∈ O[u]r and
exclusive e in its exclusives eu, stating whether it schedules o in e or not:

X = {xe,o|e ∈
⋃
u∈A eu, o ∈ O[u]r} (2)

D = {Dxe,o = {0, 1}|xe,o ∈ X} (3)

with O[u]r = {o ∈ θr|∃(s, (tstart
u , tend

u )) ∈ eu, s.t. so = s, [tstart
u , tend

u ] ∩ [tstart
o , tend

o ] 6= ∅} are
observations related to request r that can be scheduled on u’s exclusives

µ associates each variable xe,o to e’s owner
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Real-World Applications

DCOP Model (cont.)
Constraints should check that at most one observation is scheduled per request (4), that
satellites are not overloaded (5), that at most one agent serves the same observation (6)

∑
e∈

⋃
u∈A eu

xe,o ≤ 1, ∀u ∈ X ,∀o ∈ O[u]r (4)∑
o∈{o∈O[u]r|u∈A,so=s},e∈

⋃
u∈A eu

xe,o ≤ κ∗s, ∀s ∈ S (5)∑
e∈

⋃
u∈A eu

xe,o ≤ 1, ∀o ∈ O (6)

The cost to integrate an observation in the current user’s schedule should be assessed
to guide the optimization process

c(xe,o) = π(o,Muo), ∀xe,o ∈ X (7)

where π evaluates the best cost obtained when scheduling o and any combination of
observations fromMuo , as to consider all possible revisions of uo’s current schedule

C = {(4), (5), (6), (7)} (8)
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Real-World Applications

Highly conflicting randomly generated problems
5-min horizon with overlapping requests and limited capacity
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Real-World Applications

Realistic randomly generated problems
6-hour horizon with numerous requests and large capacity
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Real-World Applications

Shared Mobility as (Online) Coalition Structure Generation
[BISTAFFA et al., 2019]

What is Shared Mobility for Us?

Arrange shared rides (coalitions) among users that submit real-time requests, with the
objective of maximizing a given objective function
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Real-World Applications

Shared Mobility as (Online) Coalition Structure Generation
[ibid.]

Our Task

At each time step, arrange a (possibly empty) set of non-overlapping feasible cars among the
requests currently active in the system

Our Objective Function

Maximize environmental benefits and quality of service

Our Case Study [BISTAFFA et al., 2019]

Densely populated areas (e.g., Manhattan) with request rate of 400 reqs/minute

Gauthier Picard, Filippo Bistaffa Multi-Agent Distributed Constrained Optimization 78



Real-World Applications

Shared Mobility as (Online) Coalition Structure Generation
[ibid.]

Our Task

At each time step, arrange a (possibly empty) set of non-overlapping feasible cars among the
requests currently active in the system

Our Objective Function

Maximize environmental benefits and quality of service

Our Case Study [BISTAFFA et al., 2019]

Densely populated areas (e.g., Manhattan) with request rate of 400 reqs/minute

Gauthier Picard, Filippo Bistaffa Multi-Agent Distributed Constrained Optimization 78



Real-World Applications

Shared Mobility as (Online) Coalition Structure Generation
[ibid.]

Our Task

At each time step, arrange a (possibly empty) set of non-overlapping feasible cars among the
requests currently active in the system

Our Objective Function

Maximize environmental benefits and quality of service

Our Case Study [BISTAFFA et al., 2019]

Densely populated areas (e.g., Manhattan) with request rate of 400 reqs/minute

Gauthier Picard, Filippo Bistaffa Multi-Agent Distributed Constrained Optimization 78



Real-World Applications

Input of the Online CSG Problem
[BISTAFFA et al., 2019]

Incoming Requests

“I just issued a trip request”

Waiting Trip Requests

“I am waiting to share my ride”
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Real-World Applications

Input of the Online CSG Problem
[BISTAFFA et al., 2019]

Example of a Shared Mobility Request

“I want to go from point i to point j, and I am willing to wait δ minutes to be picked up by
somebody (d = false) / before I leave with my own car (d = true)”

r = 〈i, j, d, δ〉 (A request is a tuple r)

r ∈ Rt (The system receives a set Rt of requests at each time step t)

〈R1, . . . , Rt, . . . , Rh〉 (Sequence of inputs over a time horizon h)

The input sequence is not known a priori (Online optimization problem)
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Real-World Applications

Value v(S) of a Coalition S
[BISTAFFA et al., 2019]

The value (utility) of a coalition S is defined as:

v(S) =

environmental benefits︷ ︸︸ ︷
ρCO2 · ECO2(S) + ρnoise · Enoise(S) + ρtraffic · E traffic(S) +

quality of service︷ ︸︸ ︷
ρQoS ·Q(S)

|S| ≤ k (Maximum cardinality constraint)

F (S) = |S| ≤ k ∧ . . .

F(R) =
{
S ∈ 2R

∣∣ F (S)
}

(Set of feasible coalitions from a set R of requests)
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Real-World Applications

Curse of Dimensionality
[BISTAFFA et al., 2019]

Recall that F(R) =
{
S ∈ 2R

∣∣ F (S)
}

With |S| ≤ k, |F(R)| ≤
∑k

i=1

(|R|
i

)
, i.e., O(|R|k) (Polynomial complexity)

In practice, |Rt| can be as high as 400 (Request rate in NY taxi dataset)

Scalability Problem

Enumerating all coalitions in F(R) is impractical, especially in realistic application scenarios
with very limited time budget for the solution

Our Solution

Consider a restricted set F̂(R) of good candidate coalitions instead of F(R)
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Real-World Applications

Generation of Good Candidate Coalitions (Step 1)
[BISTAFFA et al., 2019]

, CO2 emissions

� Acoustic pollution

ö Traffic congestion

/ Quality of service

−−−−−−−−−→

20 seconds

Probabilistic
Greedy
Algorithm

Candidate
Cars
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ILP Optimization (Step 2)
[BISTAFFA et al., 2019]

Good Candidates

−−−−−−−−−→

40 seconds

ILP
Solver

ILP Solution
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Real-World Applications

Approximated ILP Formulation
[BISTAFFA et al., 2019]

maximize
∑

S∈F̂(Pool)

v(S) · xS

such that xS + xS′ ≤ 1 ∀ F̂(Pool) : S ∩ S′ 6= ∅
(Only good candidates)

Computational Advantage

Approximated ILP has a number of variables that is < 0.01% of the optimal ILP
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Today’s Menu
Introduction and Motivations

Distributed Constraint Optimization
Motivating Examples
Preliminaries
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DCOP Algorithms
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Coalition Formation on MAS
Characteristic Function Games
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Real-World Applications
Self-configuration of IoT Devices
Observation Scheduling in Multi-Owner Constellations
Shared Mobility
Collective Energy Purchasing
pyDCOP: a python Library for DCOPs

Conclusion and Wrap-up
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Real-World Applications

Collective Energy Purchasing
[FARINELLI et al., 2013]

Collective Energy Purchasing Scenario

Each agent has an energy consumption profile

Customers form coalitions to buy energy at reduced tariffs from two different markets:

I Spot market: a short-term market intended for smaller amounts of energy

I Forward market: a long-term market to buy more energy at cheaper prices
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Real-World Applications

Collective Energy Purchasing
[FARINELLI et al., 2013]

Profile Merging

Peaks in energy profiles require the use of expensive, carbon-intensive, peaking plant
generators, resulting in higher consumers electricity bill

A flattened profile results in a more efficient grid, with lower carbon emissions and lower
prices for consumers

Example

+ =
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Value v(S) of a Coalition S
[BISTAFFA et al., 2017b]

The value (utility) of a coalition S is defined as:

v(S) =

Purchased energy cost︷ ︸︸ ︷∑T

t=1
qtS(S) · pS︸ ︷︷ ︸

Spot market

+T · qF (S) · pF︸ ︷︷ ︸
Forward market

Coordination cost︷ ︸︸ ︷
− κ(S)

qtS(S): energy purchased from spot market at time t

qF (S): total energy purchased from forward market

pS : spot market energy price

pF : forward market energy price
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Real-World Applications

m+ a Characteristic Functions
[BISTAFFA et al., 2017b]

m+ a Characteristic Function

m+ a = Superadditive function + subadditive function

I Superadditive: v(S1 ∪ S2) > v(S1) + (S2)

I Subadditive: v(S1 ∪ S2) < v(S1) + (S2)

Open Question

Is the characteristic function of shared mobility m+ a?
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Real-World Applications

Branch-and-Bound for m+ a Characteristic Functions
[BISTAFFA et al., 2017b]

Can we Find an Upper Bound on v(·) in this Subtree?

{ , }, { , , , } { , }, { }, { }, { }, { }

{ , }, { , }, { }, { } { , }, { , }, { }, { }

{ , }, { , }, { }, { } { , }, { , }, { }, { }

{ , }, { , , }, { } { , }, { , , }, { }

Upper Bound M for m+ a Functions

M = v+(contract all edges) + v−(contract no edge)

Branch-and-Bound Algorithm

If M is < than current best solution, do not visit this subtree
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Real-World Applications

Programming and Evaluating DCOP Algorithms

Several libraries currently exist for the study of DCOP

AgentZero is a Java-based library [LUTATI et al., 2014]

Frodo2 is actively developed1 at École Polytechnique Fédérale de Lausanne (EPFL)
[LÉAUTÉ et al., 2009]

DisChoco is also Java-based and supports real distributed settings WAHBI et al., 2011,
but discontinued since 2014

pyDCOP is a python library developed by Orange Labs, focusing on Internet-of-Things
and dynamic deployment of DCOPs [RUST et al., 2019]

1https://frodo-ai.tech/
Gauthier Picard, Filippo Bistaffa Multi-Agent Distributed Constrained Optimization 93
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Hands on PyDCOP

Install VirtualBox
Import the pyDCOP Virtual Machine (http://bit.ly/pyDCOP)
I It’s a Debian image with everything preinstalled:
I python3, pyDCOP, matplotlib, glpk, etc.

Alternatively, follow
https://pydcop.readthedocs.io/en/latest/installation.html

1. https://pydcop.readthedocs.io/en/latest/tutorials/getting_started.html

2. https://pydcop.readthedocs.io/en/latest/tutorials/analysing_results.html
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Real-World Applications

Graph Coloring

v2

v1 v3

(a) constraints graph

p2 v2

d1,2

v1

d2,3

v3p1 p3

(b) factor graph

Objective: minimize
Domain: 2 colors R and B
Variables: V1, V2, V3

Constraints: neighbors must have different colors + preferences
Agents: 3 agents

Yaml representationGauthier Picard, Filippo Bistaffa Multi-Agent Distributed Constrained Optimization 95
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pyDCOP yaml format

graph_coloring.yaml

name: graph coloring
objective: min

domains:
colors:
values: [R, G]

variables:
v1:
domain: colors
v2:
domain: colors
v3:
domain: colors

constraints:
pref_1:
type: extensional
variables: v1
values:
-0.1: R
0.1: G

pref_2:
type: extensional
variables: v2
values:
-0.1: G
0.1: R

pref_3:
type: extensional
variables: v3
values:
-0.1: G
0.1: R

diff_1_2:
type: intention
function: 10 if v1 == v2 else 0
diff_2_3:
type: intention
function: 10 if v3 == v2 else 0

agents: [a1, a2, a3, a4, a5]
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Solving the Graph Coloring DCOP
Command:

$ pydcop solve --algo dpop graph_coloring.yaml

Output:

...
"assignment": {
"v1": "R",
"v2": "G",
"v3": "R"
},
"cost": -0.1,
...

With other algorithms:

$ pydcop --timeout 2 solve --algo dsa graph_coloring.yaml
$ pydcop solve --algo mgm --algo_params stop_cycle:20 \

graph_coloring.yaml
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Results
Full results :

{
"agt_metrics": {
...
},
"assignment": {
"v1": "R",
"v2": "G",
"v3": "R"
},
"cost": -0.1,
"cycle": 20,
"msg_count": 158,
"msg_size": 158,
"status": "FINISHED",
"time": 0.03201029699994251,
"violation": 0
}

Look at results from mgm and dsa, compared to dpop’s results !Gauthier Picard, Filippo Bistaffa Multi-Agent Distributed Constrained Optimization 98
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Logs

Simple:
use -v 0..3

$ pydcop -v 3 solve --algo dsa --algo_params stop_cycle:20 graph_coloring.
yaml

Precise :
use -log <log.conf>

$ pydcop --log log.conf solve --algo dsa --algo_params stop_cycle:10
graph_coloring.yaml

Now, look at algo.log
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Run-time metrics
periodic: "--collect_on period --period <p>"

$ pydcop --log log.conf -t 10 solve \
--collect_on period --period 1 --run_metric ./metrics.csv \
--algo dsa graph_coloring.yaml

cycle: "--collect_on cycle_change"
Only supported with synchronous algorithms !

$ pydcop solve --algo mgm --algo_params stop_cycle:20 \
--collect_on cycle_change --run_metric ./metrics.csv \
graph_coloring_50.yaml

value: "--collect_on value_change"

$ pydcop -t 5 solve --algo mgm --collect_on value_change \
--run_metric ./metrics_on_value.csv \
graph_coloring_50.yaml
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Real-World Applications

Run-time metrics
With a bigger graph coloring problem

$ pydcop solve --algo mgm --algo_params stop_cycle:20 \
--collect_on cycle_change \
--run_metric ./metrics.csv \
graph_coloring_50.yaml

Plotting with matplotlib

$ python3 plot_cost.py ./metrics.csv

Do the same thing with DSA, look at the result, what do you see ?
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Real-World Applications

Run-time metrics
MGM (1720) and DSA (1647) , both with 30 cycles
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Conclusion and Wrap-up

Today’s Menu

Introduction and Motivations

Distributed Constraint Optimization

Coalition Formation on MAS

Real-World Applications

Conclusion and Wrap-up

Gauthier Picard, Filippo Bistaffa Multi-Agent Distributed Constrained Optimization 103



Conclusion and Wrap-up

Conclusion and Wrap-up
What We’ve Seen Today

2 major multi-agent constraint optimization frameworks: DCOP, CF
I DCOP: how to collectively solve constraint optimization problems
I CF: how to form coalitions/groups with respect to some criteria and constraints

Various techniques and algorithms to attach these problems

Examples of applications in the transportation, IoT, space and energy domain
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Conclusion and Wrap-up
Open questions

Distributed constraint optimization

How to decompose or regroup as to
reduce interactions?

How to structure the system as to
improve parallelism?

How to deploy and make systems
robust and resilient in dynamic
environments?

Coalition formation

Which other realistic scenarios can we
model as m+ a?

Can we exploit some other properties
for scenarios that are not m+ a
(e.g., shared mobility)?

More in general, how can we improve
the scalability of CF approaches?

Common questions

How to use DCOPs in CF and vice versa?

Maintaining libraries and data sets
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Conclusion and Wrap-up

Special Thanks

Special thanks to all previous contributors to tutorials on multi-agent optimization and related
topics, notably

Ferdinando Fioretto, Long Tran-Thanh, Pierre Rust, Enrico Pontelli, William Yeoh, Jesus
Cerquides, Juan Antonio Rodriguez Aguilar, Alessandro Farinelli, Pedro Meseguer, Sarvapali

Ramchurn, Amnon Meisels, Roie Zivan
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Backup

Hands on PyDCOP I
Virtual machine Setup

Before starting the VM:

"Bridged adapter" mode

Select wifi network adapter

Reset MAC Address

Then

Start the VM

login: dcop / pyDCOP

Launch a terminal

Note down the IP with ip
address
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Backup

Hands on PyDCOP I
Virtual machine Setup
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Backup

Hands on PyDCOP I
Files for the tutorials are in /home/dcop/tutorials.

$ cd /home/dcop/tutorials/hands-on_1
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Backup

Hands on PyDCOP I
Web-ui

Web-base agent graphical interface:

Run the web application

$ cd ~/pydcop-ui
$ python3 -m http.server

Launch a browser on http://127.0.0.1:8000

Solve the dcop with the option --uiport <port> (also, use --delay <delay>)

$ pydcop -v 3 solve -a mgm -d adhoc --delay 2 --uiport 10000
./graph_coloring_3agts_10vars.yaml

Each agent exposes a web-socket, the web application connects to these websockets
and display the agents’ state.
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Hands on PyDCOP I
Web-ui
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Hands on PyDCOP I
Web-ui
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