Distributed Constraint Optimization

Gauthier Picard

ONERA/DTIS

gauthier.picard@onera.fr

- Some contents taken from OPTMAS 2011 and OPTMAS-DCR 2014 Tutorials-

00000 000000000000000 0000000000000000 00

Contents

Introduction

Constraint Optimization Problems DCOP Framework Application Domains

Complete Algorithms for DCOP

Asynchronous Distributed Optimisation (ADOPT) Distributed Pseudotree Optimization Procedure (DPOP)

Approximate Algorithms for DCOP

Distributed Stochastic Search Algorithm (DSA) Maximum Gain Message (MGM-1)

Synthesis

Panorama

Constraint Optimization Problems

Sometimes satisfaction is not possible

- Overconstrained problem
- Solution is not binary

Switch from satisfaction to optimization

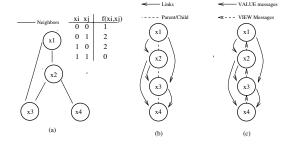
- Minimizing the number of violated constraints
- Minimizing the cost of violated constraints
- Maximizing the overall utility of the system

Gauthier Picard

. . . .

DCOP Framework

Motivations


- In dynamic and complex environments not all constraints can be satisfied completely
- Satisfaction → Optimisation (combinatorial)
 - ex: minimizing the number of unchecked constraints, minimizing the sum of the costs of violated constraints, etc.

Definition (DCOP)

A DCOP is a DCSP $\langle A, X, D, C, \phi \rangle$ with

- a cost function $f_{ij}: D_i \times D_j \mapsto \mathbb{N} \cup \infty$ for each pair x_i, x_j
- an objective function $F: D \mapsto \mathbb{N} \cup \infty$ evaluating an assignment \mathcal{A} with $f_{ij}(d_i, d_j)$ for each pair x_i, x_j

DCOP Framework (cont.)

Objective Function

$$F(\mathcal{A}) = \sum_{x_i, x_j \in X} f_{ij}(d_i, d_j) \text{ where } x_i \leftarrow d_i \text{ and } x_i \leftarrow d_i \text{ in } \mathcal{A}$$

 $F(\{(x_1,0),(x_2,0),(x_3,0),(x_4,0)\}) = 4$ $F(\{(x_1,1),(x_2,1),(x_3,1),(x_4,1)\}) = 0$ $\mathcal{A}^* = \{(x_1,1),(x_2,1),(x_3,1),(x_4,1)\} = 0$

Gauthier Picard

Distributed Constraint Optimization

Approximate DCOP

Synthesis

Application Domains

Gauthier Picard

Distributed Constraint Optimization

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000	000000000000000000000000000000000000000	0000000000000000	00	

Contents

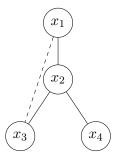
Introduction

Complete Algorithms for DCOP

Asynchronous Distributed Optimisation (ADOPT) Distributed Pseudotree Optimization Procedure (DPOP)

Approximate Algorithms for DCOP

Synthesis


Asynchronous Distributed Optimisation (ADOPT) [MODI et al., 2005]

ADOPT: DFS tree (pseudotree)

ADOPT assumes that agents are arranged in a DFS tree:

- constraint graph \rightarrow rooted graph (select a node as root)
- some links form a tree / others are backedges
- two constrained nodes must be in the same path to the root by tree links (same branch)

Every graph admits a DFS tree: DFS graph traversal

ADOPT Features

Asynchronous algorithm

Each time an agent receives a message:

- Processes it (the agent may take a new value)
- Sends VALUE messages to its children and pseudochildren
- Sends a COST message to its parent
- Context: set of (variable value) pairs (as ABT agent view) of ancestor agents (in the same branch)
- Current context:
 - Updated by each VALUE message
 - If current context is not compatible with some child context, the later is initialized (also the child bounds)

ADOPT Procedures

Initialize

- threshold ← 0; CurrentContext ← {};
- (2) forall $d \in D_i$, $x_i \in Children$ do
- (3) $lb(d, x_l) \leftarrow 0; t(d, x_l) \leftarrow 0;$
- (4) $ub(d, x_l) \leftarrow Inf; context(d, x_l) \leftarrow \{\}; enddo;$
- (5) d: ← d that minimizes LB(d):
- (6) backTrack;

when received (THRESHOLD, t, context)

- (7) if context compatible with CurrentContext:
- (8) threshold $\leftarrow t$:
- (9) maintainThresholdInvariant;
- (10) backTrack; endif;

when received (TERMINATE context)

- (11) record TERMINATE received from parent:
- (12) CurrentContext ← context:
- (13) backTrack;

when received (VALUE, (xi, di))

- (14) if TERMINATE not received from parent:
- (15) add (x : d :) to CurrentContext:
- forall $d \in D_i$, $x_l \in Children$ do (16)
- (17) if context(d, xt) incompatible with CurrentContext:
- (18) $lb(d, x_l) \leftarrow 0; t(d, x_l) \leftarrow 0;$
- (19) $ub(d, x_l) \leftarrow Inf; context(d, x_l) \leftarrow \{\}; endif; enddo;$
- (20) maintainThresholdInvariant:
- (21) backTrack; endif;

when received (COST, x1, context, lb, ub)

- d ← value of x_i in context;
- (23) remove (x; d) from context:
- (24) if TERMINATE not received from parent:
- forall $(x_j, d_j) \in context$ and x_j is not my neighbor do (25)
- (26) add (x; d;) to CurrentContext:enddo:
- (27) forall $d' \in D_i$, $x_i \in Children$ do
- (28)if context(d', x1) incompatible with CurrentContext:
- (29) $lb(d', x_t) \leftarrow 0; t(d', x_t) \leftarrow 0;$
- (30) $ub(d', x_l) \leftarrow Inf; context(d', x_l) \leftarrow \{\}:endif:enddo:endif;$
- (31) if context compatible with CurrentContext:
- (32) $lb(d, x_k) \leftarrow lb;$
- (33) $ub(d, x_k) \leftarrow ub;$
- (34) $context(d, x_k) \leftarrow context;$
- (35) maintainChildThresholdInvariant
- (36) maintainThresholdInvariant; endif;
- (37) backTrack:

Algorithm 1: ADOPT Procedures

Distributed Constraint Optimization

procedure backTrack (38) if threshold == UB:

- (39) d_i ← d that minimizes UB(d);
- (40) else if LB(d;) > threshold;
- (41) d_i ← d that minimizes LB(d);endif;
- (42) SEND (VALUE, (x_i, d_i))
- (43) to each lower priority neighbor:
- (44) maintainAllocationInvariant;
- (46) if TERMINATE received from parent
- (48) SEND (TERMINATE.
- (49) $CurrentContext \cup \{(x_i, d_i)\})$

(47) or x; is root:

(50) to each child;

(51) Terminate execution: endif:endif

(52) SEND (COST, xi, CurrentContext, LB, UB)

to parent:

(45) if threshold == UB:

ADOPT Messages

- value($parent \rightarrow children \cup pseudochildren, a$): parent informs descendants that it has taken value a
- $cost(child \rightarrow parent, lowerbound, upperbound, context)$: child informs parent of the best cost of its assignment; attached context to detect obsolescence
- threshold($parent \rightarrow child, t$): minimum cost of solution in child is at least t
- termination($parent \rightarrow children$): sent when LB = UB

2.

ADOPT Data Structures

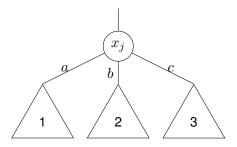
Introduction

1

Iower bounds	$lb(x_k)$
upper bounds	$ub(x_k)$
thresholds	$th(x_k)$
contexts	$context(x_k)$

If a context becomes no active, it is removed $(lb \leftarrow 0, th \leftarrow 0, ub \leftarrow \infty)$

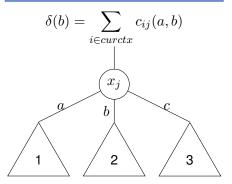
Approximate DCOP

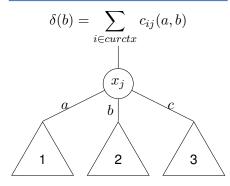

Stored contextes must be active: $context \in current context$

x_j	a	b	С	d
(r_k)	3	0	0	0
(r_k)	∞	∞	∞	∞
(x_k)	1	0	0	0
(x_k)				

3		
x_i	x_j	
a	c	

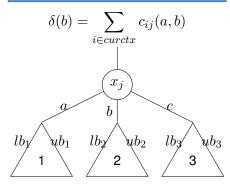
Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
	000000000000000000000000000000000000000			


ADOPT Bounds

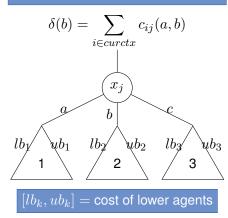

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
	000000000000000000000000000000000000000			

ADOPT Bounds

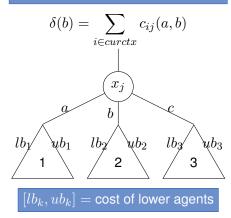
 $\delta(value) =$ cost with higher agents



Introduction	Complete DCOP ○○○○○○●○○○○○○○○○○	Approximate DCOP	Synthesis oo	References
ADOPT Bou	inds		$(r) = \min \delta(d) + $	


$$OPT(x_j, ctx) = \min_{d \in d_j} \delta(d) + \sum_{x_k \in children} OPT(x_k, ctx \cup (x_j, d))$$

Introduction	Complete DCOP	Approximate DCOP	Synthesis 00	References
ADOPT E	Bounds	ODT(m) of	$f(a) = \min \delta(d) +$	


$$OPT(x_j, ctx) = \min_{d \in d_j} \delta(d) + \sum_{x_k \in children} OPT(x_k, ctx \cup (x_j, d))$$

Introduction	Complete DCOP	Approximate DCOP	Synthesis oo	References
ADOPT E	Bounds			
		$OPT(x_j, ct)$	$tx) = \min_{d \in d_i} \delta(d) + $	

$$OPT(x_j, ctx) = \min_{d \in d_j} \delta(d) + \sum_{x_k \in children} OPT(x_k, ctx \cup (x_j, d))$$

Introduction 00000	Complete DCOP	Approximate DCOP	Synthesis oo	References
ADOPT E	Bounds			
		$OPT(x_i, ctx) = \min \delta(d) +$		

$$OPT(x_j, ctx) = \min_{d \in d_j} \delta(d) + \sum_{x_k \in children} OPT(x_k, ctx \cup (x_j, d))$$

$$LB(b) = \delta(b) + \sum_{x_k \in children} lb(b, x_k)$$

$$LB = \min_{b \in d_j} LB(b)$$

$$UB(b) = \delta(b) + \sum_{x_k \in children} ub(b, x_k)$$

 $UB = \min_{b \in d_j} UB(b)$

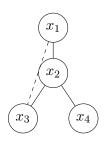
ADOPT Value Assignment

- An ADOPT agent takes the value with minimum LB
- Eager behavior:
 - Agents may constantly change value
 - Generates many context changes

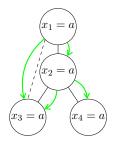
Threshold:

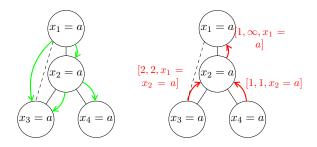
- Iower bound of the cost that children have from previous search
- parent distributes threshold among children
- incorrect distribution does not cause problems: the child with minor allocation would send a COST to the parent later, and the parent will rebalance the threshold distribution

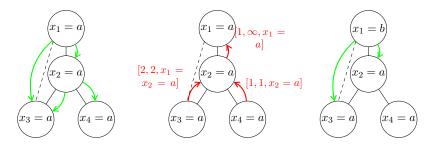
ADOPT Properties

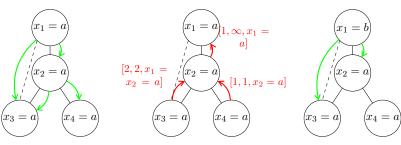

- For any x_i , $LB \leq OPT(x_l, ctx) \leq UB$
- For any x_i , its threshold reaches UB
- For any x_i , its final threshold is equal to $OPT(x_l, ctx)$
- \rightarrow ADOPT terminates with the optimal solution

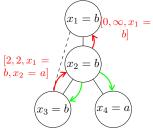
Introduction	Complete DCOP	Approximate DCOP	Synthesis oo	References
ADOPT Exa	mple			

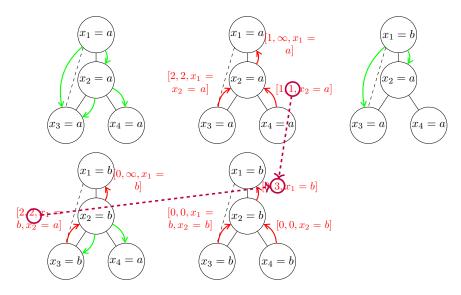

- 4 variables (4 agents) x_1, x_2, x_3 and x_4 with $D = \{a, b\}$
- 4 binary identical cost functions


x_i	x_j	cost
а	а	1
а	b	2
b	а	2
b	b	0

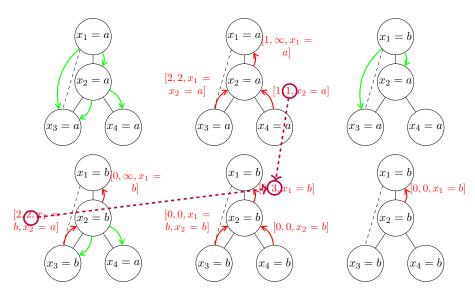

Constraint graph


Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
	000000000000000000000000000000000000000			





References



Distributed Constraint Optimization

References

Distributed Pseudotree Optimization Procedure (DPOP) [PETCU and FALTINGS, 2005]

3-phase distributed algorithm

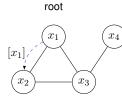
PHASES ME	SSAGES
-----------	--------

- 1. DFS Tree construction
- 2. Utility phase: from leaves to root
- 3. Value phase: from root to leaves

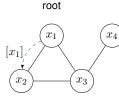
token passing

```
util (child \rightarrow parent, constraint table
[-child])
value (parent \rightarrow children \cup pseu-
dochildren, parent value)
```

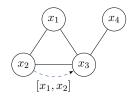
DFS Tree Phase

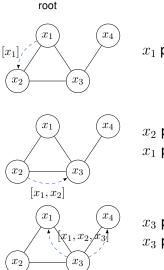

Distributed DFS graph traversal: token, ID, neighbors(X)

- 1. X owns the token: adds its own ID and sends it in turn to each of its neighbors, which become children
- 2. *Y* receives the token from *X*: it marks *X* as visited. First time *Y* receives the token then parent(Y) = X. Other IDs in token which are also neighbors(Y) are **pseudoparent**. If *Y* receives token from neighbor *W* to which it was never sent, *W* is pseudochild.
- 3. When all neighbors(X) visited, X removes its ID from token and sends it to parent(X).

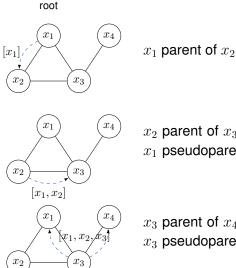

A node is selected as root, which starts

When all neighbors of root are visited, the DFS traversal ends

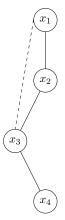

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000	000000000000000000000000000000000000000	0000000000000000	00	


 x_1 parent of x_2

 x_1 parent of x_2


 x_2 parent of x_3 x_1 pseudoparent of x_3

 x_1 parent of x_2


 x_2 parent of x_3 x_1 pseudoparent of x_3

 x_3 parent of x_4 x_3 pseudoparent of x_1

 x_2 parent of x_3 x_1 pseudoparent of x_3

 x_3 parent of x_4 x_3 pseudoparent of x_1

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00	

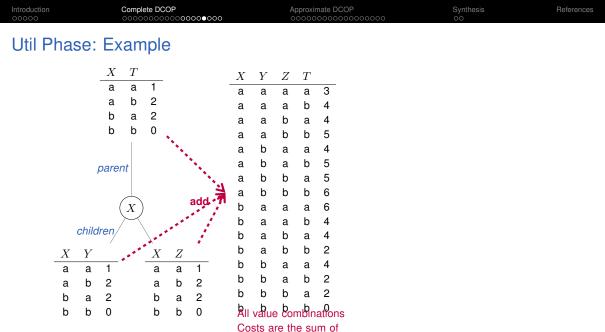
Util Phase

Agent X:

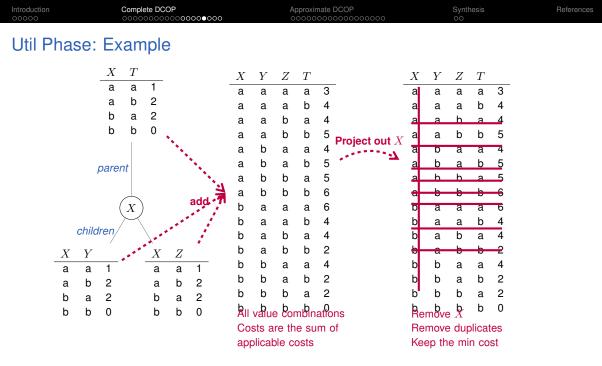
- receives from each child Y_i a cost function: $C(Y_i)$
- combines (adds, joins) all these cost functions with the cost functions with parent(X) and pseudoparents(X)
- projects X out of the resulting cost function, and sends it to parent(X)

From the leaves to the root


Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
	000000000000000000000000000000000000000			

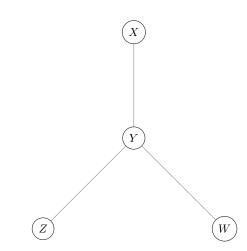

Util Phase: Example

(X)

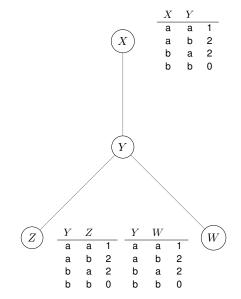

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
	000000000000000000000000000000000000000			

Util Phase: Example

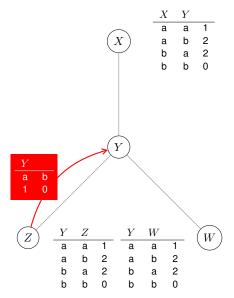
applicable costs

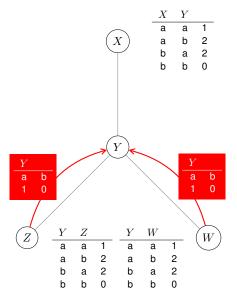

00000000000000000000000000000000000000	Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
	00000	000000000000000000000000000000000000000	00000000000000000	00	

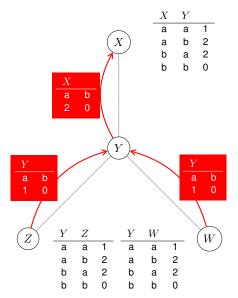
Value Phase

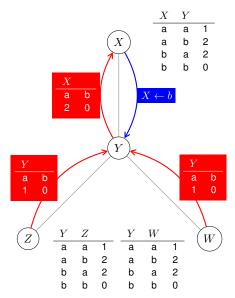

- 1. The root finds the value that minimizes the received cost function in the util phase, and informs its descendants (children ∪ pseudochildren)
- 2. Each agent waits to receive the value of its parent / pseudoparents
- 3. Keeping fixed the value of parent/pseudoparents, finds the value that minimizes the received cost function in the Util phase
- 4. Informs of this value to its children/pseudochildren

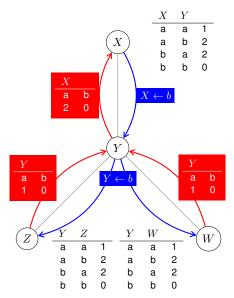
This process starts at the root and ends at the leaves

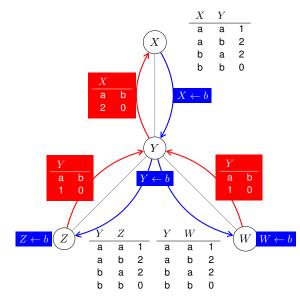

Introduction	Complete DCOP	Approximate DCOP	Synthesis	Referen
	000000000000000000000000000000000000000			

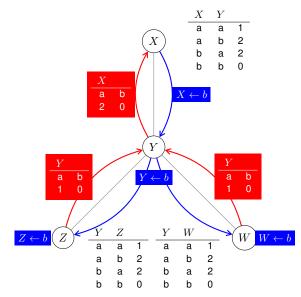

00000 000000000 0000000 00000000000000	Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
	00000	000000000000000000000000000000000000000	00000000000000000	00	


Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000	000000000000000000000000000000000000000	00000000000000000	00	

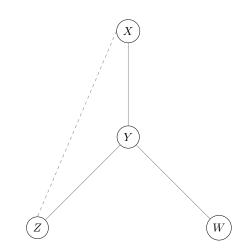

00000 0000000000000 00000000 0000000000	00	

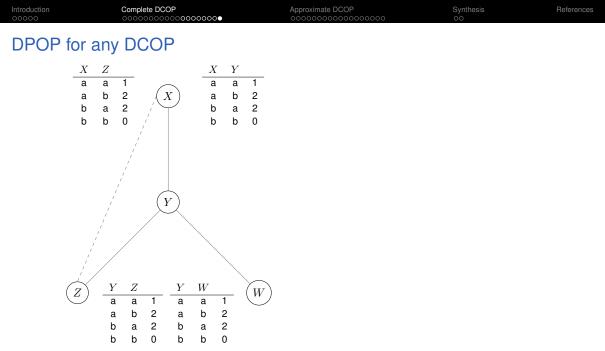

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000	000000000000000000000000000000000000000	00000000000000000	00	

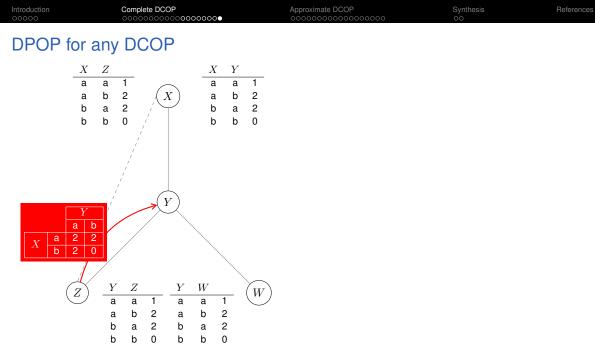

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000	000000000000000000000000000000000000000	00000000000000000	00	

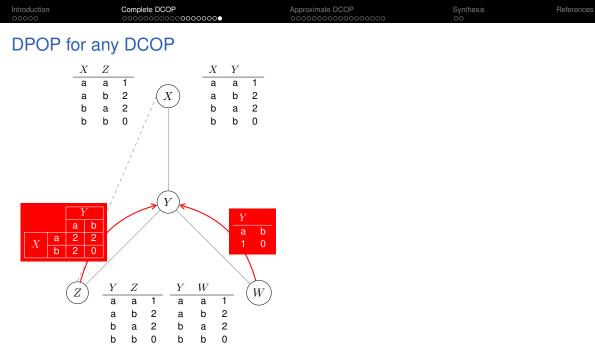

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000	000000000000000000000000000000000000000	00000000000000000	00	

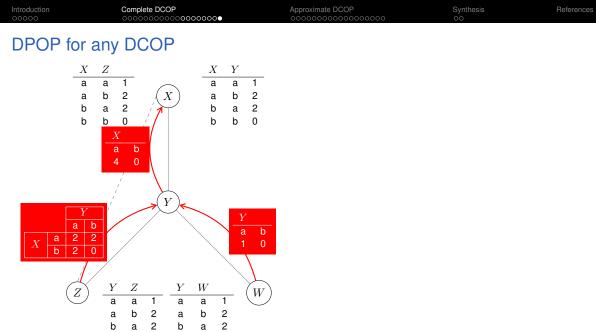
Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000	000000000000000000000000000000000000000	00000000000000000	00	

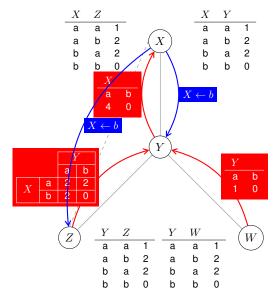

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000	000000000000000000000000000000000000000	00000000000000000	00	

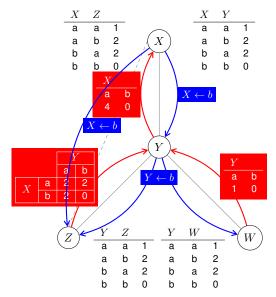


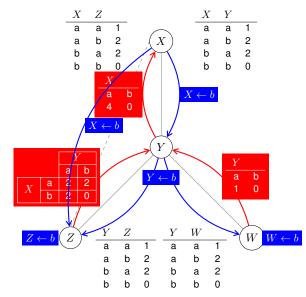

Optimal solution:

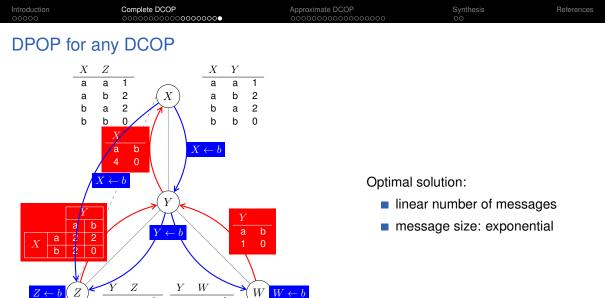

- linear number of messages
- message size: linear


Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
	00000000000000000000000			








b b 0

b b 0

a a 1 a a

а

b

b b

b 2

а

2

0

1

2

0

b 2

а

b

а

b

b

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000	00000000000000000	000000000000000000000000000000000000000	00	

Contents

Introduction

Complete Algorithms for DCOP

Approximate Algorithms for DCOP

Distributed Stochastic Search Algorithm (DSA) Maximum Gain Message (MGM-1)

Synthesis

Approximate Algorithms for DCOPs

Complete algorithms

- e.g. ADOPT [Modi et al., 2005] and DPOP [PETCU and FALTINGS, 2005]
 - complete
 - 🗡 slow

Aproximate algorithms exist (fast, but sub-optimal in many cases)

- Search algorithms
 - DBA [Yokoo, 2001], DSA [Zhang et al., 2005], MGM [Maheswaran et al., 2004]
- Inference algorithms
 - Max-sum [Farinelli et al., 2008]

Why Approximate Algorithms

Motivations

- Often optimality in practical applications is not achievable
- Fast good enough solutions are all we can have

Example – Graph coloring

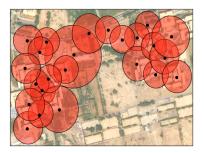
- Medium size problem (about 20 nodes, three colors per node)
- Number of states to visit for optimal solution in the worst case $3^{20} = 3M$ states

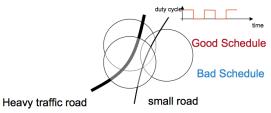
Key problem

Provides guarantees on solution quality

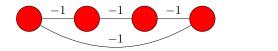
Exemplar Application: Surveillance

Event Detection

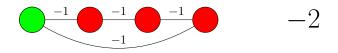

- Vehicles passing on a road
- Energy Constraints
 - Sense/Sleep modes
 - Recharge when sleeping

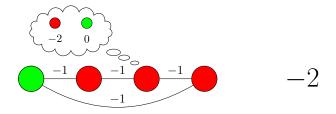

Coordination

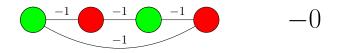
- Activity can be detected by single sensor
- Roads have different traffic loads

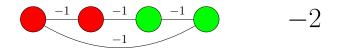

Aim

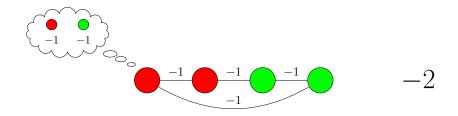
 Focus on road with more traffic load

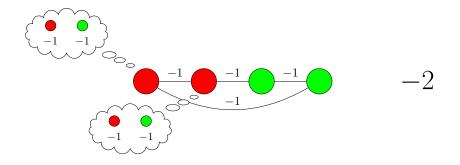

- Start from random solution
- Do local changes if global solution improves
- Local: change the value of a subset of variables, usually one

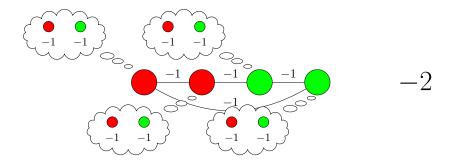

- Start from random solution
- Do local changes if global solution improves
- Local: change the value of a subset of variables, usually one


- Start from random solution
- Do local changes if global solution improves
- Local: change the value of a subset of variables, usually one

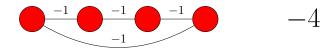

- Start from random solution
- Do local changes if global solution improves
- Local: change the value of a subset of variables, usually one


- Start from random solution
- Do local changes if global solution improves
- Local: change the value of a subset of variables, usually one

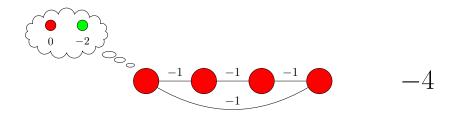

- Local minima
- Standard solutions: Random Walk, Simulated Annealing


- Local minima
- Standard solutions: Random Walk, Simulated Annealing

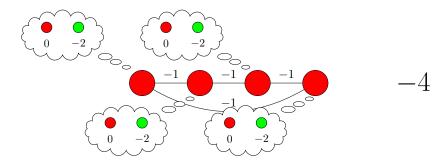
- Local minima
- Standard solutions: Random Walk, Simulated Annealing



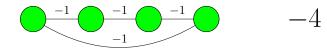
- Local minima
- Standard solutions: Random Walk, Simulated Annealing


Distributed Local Greedy approaches

- Local knowledge
- Parallel execution
 - A greedy local move might be harmful/useless
 - Need coordination


Distributed Local Greedy approaches

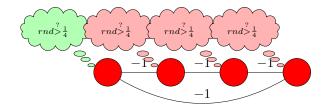
- Local knowledge
- Parallel execution
 - A greedy local move might be harmful/useless
 - Need coordination


Distributed Local Greedy approaches

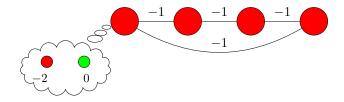
- Local knowledge
- Parallel execution
 - A greedy local move might be harmful/useless
 - Need coordination

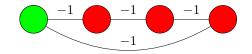
Distributed Local Greedy approaches

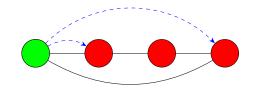
- Local knowledge
- Parallel execution
 - A greedy local move might be harmful/useless
 - Need coordination


Distributed Stochastic Search Algorithm (DSA) [ZHANG et al., 2005]

- Greedy local search with activation probability to mitigate issues with parallel executions
- DSA-1: change value of one variable at time
- Initialize agents with a random assignment and communicate values to neighbors
- Each agent:
 - Generates a random number and execute only if rnd less than activation probability
 - When executing changes value maximizing local gain
 - Communicate possible variable change to neighbors


Approximate DCOP


Synthesi



Approximate DCOP

Approximate DCOP

DSA-1: Discussion

Extremely "cheap" (computation/communication)

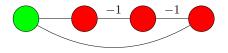
Good performance in various domains

- e.g. target tracking [FITZPATRICK and MEERTENS, 2003; ZHANG et al., 2003]
- Shows an anytime property (not guaranteed)
- Benchmarking technique for coordination

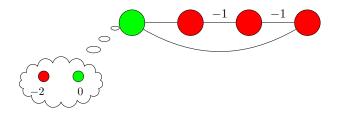
Problems

- Activation probablity must be tuned [ZHANG et al., 2003]
- No general rule, hard to characterise results across domains

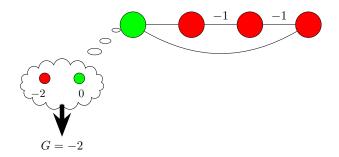
Maximum Gain Message (MGM-1) [MAHESWARAN et al., 2004]

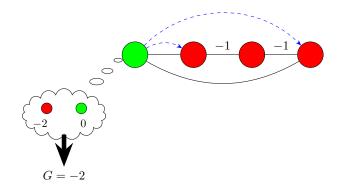

Coordinate to decide who is going to move

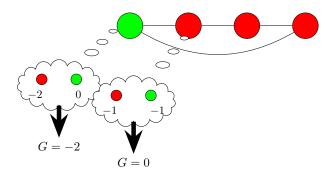
- Compute and exchange possible gains
- Agent with maximum (positive) gain executes

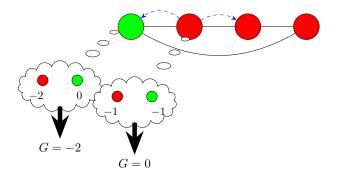

Analysis

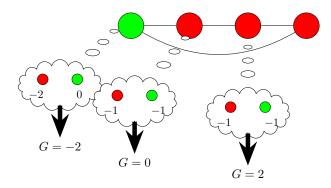
- Empirically, similar to DSA
- More communication (but still linear)
- No Threshold to set
- Guaranteed to be monotonic (Anytime behavior)

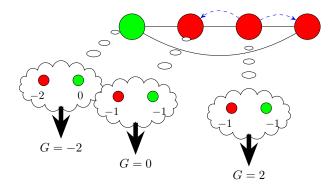

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
		000000000000000000		

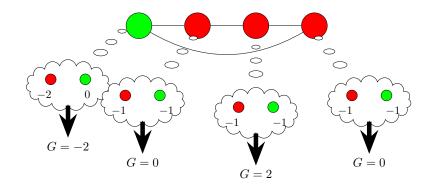

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
		000000000000000000		

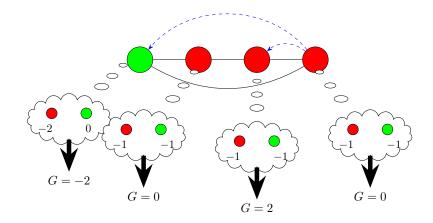

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
		000000000000000000		

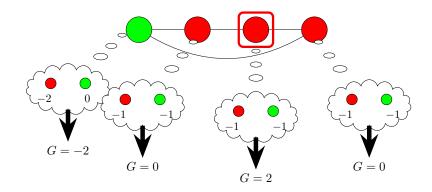

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
		000000000000000000000000000000000000000		

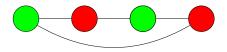

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References


Introduction	Complete DCOP	Approximate DCOP	Synthesis	References


Introduction	Complete DCOP	Approximate DCOP	Synthesis 00	References


Introduction	Complete DCOP	Approximate DCOP	Synthesis	References


Introduction	Complete DCOP	Approximate DCOP	Synthesis	References


Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
		000000000000000000		

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
		000000000000000000000000000000000000000		

To sum up on local greedy approaches

Exchange local values for variables

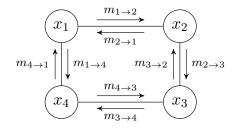
Similar to search based methods (e.g. ADOPT)

Consider only local information when maximizing

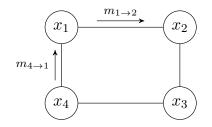
- Values of neighbors
- Anytime behaviors
- Could result in very bad solutions

00000 00000000000000 00000000 00000000	Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
	00000	00000000000000000	000000000000000000000000000000000000000	00	

GDL-based approaches

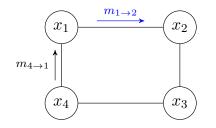

- Generalized Distributive Law [AJI and MCELIECE, 2000]
 - Unifying framework for inference in Graphical models
 - Builds on basic mathematical properties of semi-rings
 - Widely used in Info theory, Statistical physics, Probabilistic models

Max-sum


DCOP settings: maximise social welfare

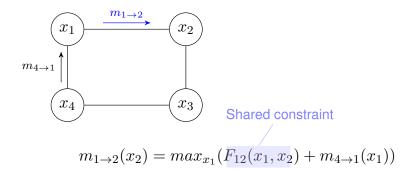
	K_{i}	"(+,0)"	"(\cdot , 1)"	short name
1.	A	(+,0)	$(\cdot, 1)$	
2.	A[x]	(+, 0)	$(\cdot, 1)$	
3.	$A[x, y, \ldots]$	(+, 0)	$(\cdot, 1)$	
4.	$[0,\infty)$	(+, 0)	$(\cdot, 1)$	sum-product
5.	$(0,\infty]$	(\min,∞)	$(\cdot, 1)$	\min -product
6.	$[0,\infty)$	$(\max, 0)$	$(\cdot, 1)$	max-product
7.	$(-\infty,\infty]$	(\min,∞)	(+, 0)	min-sum
8.	$[-\infty,\infty)$	$(\max, -\infty)$	(+, 0)	max-sum
9.	$\{0, 1\}$	$(\mathtt{OR}, 0)$	(AND, 1)	Boolean
10.	2^{S}	(\cup, \emptyset)	(\cap, S)	
11.	Λ	(∨,0)	$(\wedge, 1)$	
12.	Λ	$(\wedge, 1)$	(∨,0).	

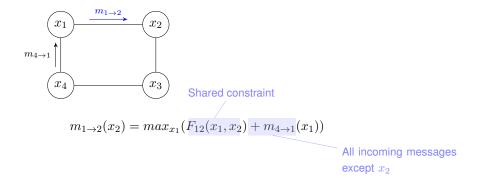
Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000	000000000000000000	000000000000000000000000000000000000000	00	



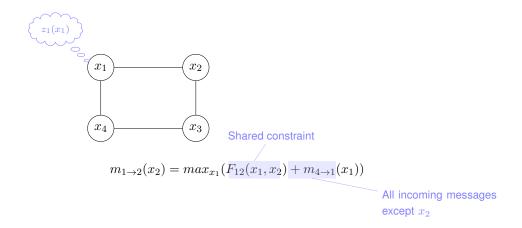
Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00	

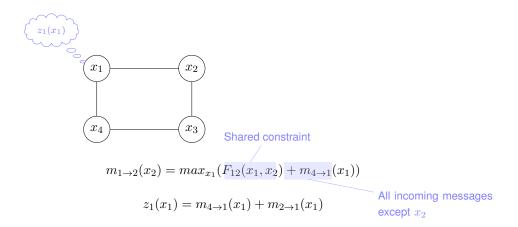
Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000	00000000000000000	000000000000000000000000000000000000000	00	

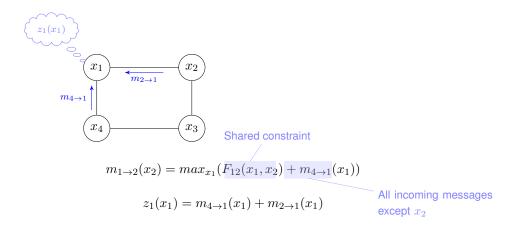

Agents iteratively computes local functions that depend only on the variable they control

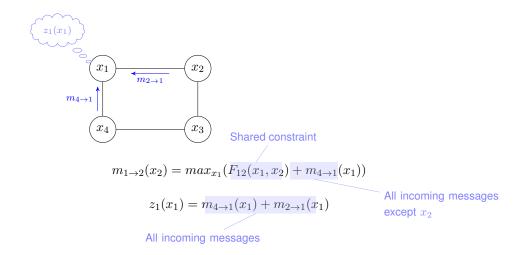

 $m_{1\to 2}(x_2) = max_{x_1}(F_{12}(x_1, x_2) + m_{4\to 1}(x_1))$

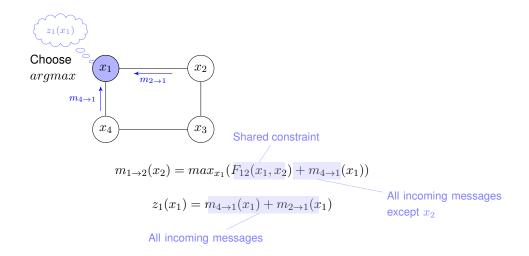
Distributed Constraint Optimization


Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000	000000000000000000	000000000000000000000000000000000000000	00	

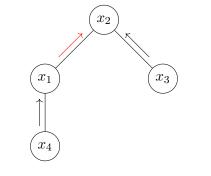

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000	000000000000000000	000000000000000000000000000000000000000	00	


Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000		000000000000000000000000000000000000000		


Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000		000000000000000000000000000000000000000		


Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000		000000000000000000000000000000000000000		

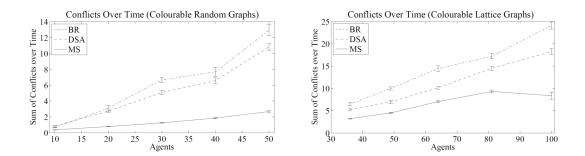
Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000		000000000000000000000000000000000000000		



Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000		000000000000000000000000000000000000000		

Max-Sum on acyclic graphs

- Max-sum Optimal on acyclic graphs
 - Different branches are independent
 - Each agent can build a correct estimation of its contribution to the global problem (z functions)
- Message equations very similar to Util messages in DPOP
 - Sum messages from children and shared constraint
 - Maximize out agent variable
 - GDL generalizes DPOP [VINYALS et al., 2011]

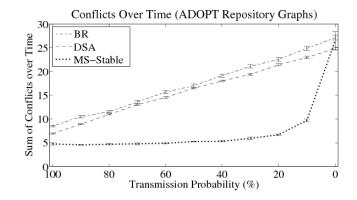


$$m_{1\to 2}(x_2) = max_{x_1}(F_{12}(x_1, x_2) + m_{4\to 1}(x_1))$$

Max-sum Performance

Good performance on loopy networks [FARINELLI et al., 2008]

- When it converges very good results
 - Interesting results when only one cycle [WEISS, 2000]
- We could remove cycle but pay an exponential price (see DPOP)



Distributed Constraint Optimization

Max-Sum for low power devices

Low overhead

- Msgs number/size
- Asynchronous computation
 - Agents take decisions whenever new messages arrive
- Robust to message loss

Distributed Constraint Optimization

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000	000000000000000000000000000000000000000	0000000000000000	0	

Contents

Introduction

Complete Algorithms for DCOP

Approximate Algorithms for DCOP

Synthesis Panorama

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
00000	000000000000000000000000000000000000000	0000000000000000	00	

Panorama

Algorithm	Туре	Memory	Messages	Remarks
ADOPT	COP	Polynomial	Exponential	Complete
DPOP	COP	Exponential	Linear	Complete
DSA	COP	Linear	?	Not complete
MGM	COP	Linear	?	Not complete
Max-Sum	COP	Exponential	Linear on acyclic	Complete on trees

Table: DCOP algorithms

Introduction	Complete DCOP	Approximate DCOP	Synthesis	References
Refer	rences			
	AJI, S.M. and R.J. MCELIECE (2000). "The ge 46.2, pp. 325–343. ISSN: 0018-9448. DOI: 10		ation Theory, IEEE Transa	actions on
	FARINELLI, A., A. ROGERS, A. PETCU, and N Embedded Devices Using the Max-sum Algo Autonomous Agents and Multiagent Systems and Multiagent Systems, pp. 639–646. ISBN:	rithm". In: <i>Proceedings of the 7th Inter</i> : - <i>Volume 2</i> . AAMAS '08. Internationa	rnational Joint Conferenc	e on
	FITZPATRICK, Stephen and Lambert MEERTE Distributed Sensor Networks: A Multiagent P Boston, MA: Springer US, pp. 257–295. ISBN	erspective. Ed. by Victor LESSER, Cha	u 1	
	MAHESWARAN, R.T., J.P. PEARCE, and M. TA Approach". In: <i>Proceedings of the 17th Interr</i> (<i>PDCS</i>), San Francisco, CA, pp. 432–439.			
	MODI, P. J., W. SHEN, M. TAMBE, and M. YOR with Quality Guarantees". In: Artificial Intellige		Distributed Constraint Opt	timization
	PETCU, Adrian and Boi FALTINGS (2005). "A sinternational Joint Conference on Artificial International Joint Conference on Artificial		•	AI
	VINYALS, Meritxell, Juan A. RODRÍGUEZ-AGU dynamic programming DCOP algorithms via Systems 3.22, pp. 439–464. ISSN: 1387-2532	the generalized distributive law". In: A	utonomous Agents and N	

References (cont.)

WEISS, Yair (Jan. 2000). "Correctness of Local Probability Propagation in Graphical Models with Loops". In: *Neural Comput.* 12.1, pp. 1–41. ISSN: 0899-7667. DOI: 10.1162/089976600300015880. URL: http://dx.doi.org/10.1162/089976600300015880.

YOKOO, M. (2001). Distributed Constraint Satisfaction: Foundations of Cooperation in Multi-Agent Systems. Springer.

ZHANG, W., G. WANG, Z. XING, and L. WITTENBURG (2005). "Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks.". In: *Journal of Artificial Intelligence Research (JAIR)* 161.1-2, pp. 55–87.

ZHANG, Weixiong, Guandong WANG, Zhao XING, and Lars WITTENBURG (2003). "A Comparative Study of Distributed Constraint Algorithms". In: *Distributed Sensor Networks: A Multiagent Perspective*. Ed. by Victor LESSER, Charles L. ORTIZ, and Milind TAMBE. Boston, MA: Springer US, pp. 319–338.