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Constraint Optimization Problems

Sometimes satisfaction is not possible

Overconstrained problem

Solution is not binary

Switch from satisfaction to optimization

Minimizing the number of violated constraints

Minimizing the cost of violated constraints

Maximizing the overall utility of the system

. . .
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DCOP Framework

Motivations
In dynamic and complex environments not all constraints can be satisfied completely
Satisfaction→ Optimisation (combinatorial)
I ex: minimizing the number of unchecked constraints, minimizing the sum of the costs of

violated constraints, etc.

Definition (DCOP)
A DCOP is a DCSP 〈A,X,D,C, φ〉 with

a cost function fij : Di ×Dj 7→ N ∪∞ for each pair xi, xj
an objective function F : D 7→ N ∪∞ evaluating an assignment A with fij(di, dj) for
each pair xi, xj
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DCOP Framework (cont.)
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Fig. 1. (a) Example constraint graph. (b) An example ordering formed from the constraint graph
in (a). (c) Flow of VALUE and VIEW messages between agents.

3.2 Simple Adopt

Procedures from the Simple-Adopt algorithm are shown in Figure 2. represents the
agent’s local variable and represents its current value. The algorithm begins by each
agent choosing a value for its variable concurrently and sending this value to all its
linked descendents via a VALUE message. After this, agents asynchronously wait for
and respond to incoming messages. Upon receiving a VALUE message, an agent stores
the current value of the linked ancestors in its variable, which represents
’s current context. It then reports to its parent the current lower bound for its current

context. This information is sent via a VIEW message. Figure 1.c shows the flow of
VALUE and VIEWmessages between agents as the algorithm executes asynchronously.
To be more concrete,

– Initialize: For each value , set , the current lower bound for value , to zero.
Go to hill climb.

– hill climb: For each value , compute estimate of lower bound, denoted (Fig-
ure 2, Line (iii)). If is a leaf agent, is just the local cost,

; If is not a leaf agent, will also include the current lower bound
reported to from its child. Choose such that is minimized (Figure 2, Line
(iv)) and make it the current value. Send VALUEmessage to all linked descendents.
Send the lower bound to parent via a VIEWmessage, but since global context could
change before parent receives the VIEW message, attach the current context under
which the cost was computed.

– when received VALUE:Update current context. If there is a context change, delete
all stored lower bounds. Go to hill climb.

– when received VIEW: Compare the received context against own current context
(Figure 2,Line (i)) to see if they are compatible. If not compatible, throw message
away; If compatible, i.e., the reported lower bound is still valid, only store new
lower bound if it has increased from previously reported lower bound. If lower
bound has increased, go to hill climb.

In the when received VIEW procedure, it is correct to throw away VIEW mes-
sages when there is an incompatibility between and the context attached

Objective Function

F (A) =
∑

xi,xj∈X
fij(di, dj) where xi ← di and xi ← di in A

F ({(x1, 0), (x2, 0), (x3, 0), (x4, 0)}) = 4

F ({(x1, 1), (x2, 1), (x3, 1), (x4, 1)}) = 0
A∗ = {(x1, 1), (x2, 1), (x3, 1), (x4, 1)}

Gauthier Picard Distributed Constraint Optimization 5



Introduction Complete DCOP Approximate DCOP Synthesis References

DCOP Algorithms

Complete 
Algorithms

DCOP  ALGORITHMS

DCOP 
Algorithms 

Incomplete 
Algorithms

Search 
Algorithms

Inference 
Algorithms

Search 
Algorithms

Inference 
Algorithms

Sampling 
Algorithms

e.g., SBB, 
ADOPT, 

AFB

e.g., DPOP, 
Action-
GDL

e.g., MGM, 
DBA, DSA

e.g., max-
sum

e.g., DUCT,  
D-Gibbs
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Application Domains
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Asynchronous Distributed Optimisation (ADOPT) [MODI et al., 2005]

ADOPT: DFS tree (pseudotree)
ADOPT assumes that agents are arranged in a DFS
tree:

constraint graph→ rooted graph (select a node as
root)

some links form a tree / others are backedges

two constrained nodes must be in the same path to
the root by tree links (same branch)

Every graph admits a DFS tree: DFS graph traversal

x1

x2

x3 x4
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ADOPT Features

Asynchronous algorithm
Each time an agent receives a message:
I Processes it (the agent may take a new value)
I Sends VALUE messages to its children and pseudochildren
I Sends a COST message to its parent

Context: set of (variable value) pairs (as ABT agent view) of ancestor agents (in the
same branch)
Current context:
I Updated by each VALUE message
I If current context is not compatible with some child context, the later is initialized (also the

child bounds)
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ADOPT Procedures P.J. Modi et al. / Artificial Intelligence 161 (2005) 149–180 157

Initialize
(1) threshold ← 0; CurrentContext ← {};
(2) forall d ∈ Di,xl ∈Children do
(3) lb(d, xl ) ← 0; t (d, xl ) ← 0;
(4) ub(d, xl ) ← Inf ; context(d, xl ) ← {}; enddo;
(5) di ← d that minimizes LB(d);
(6) backTrack;

when received (THRESHOLD, t , context)
(7) if context compatible with CurrentContext:
(8) threshold ← t ;
(9) maintainThresholdInvariant;
(10) backTrack; endif;

when received (TERMINATE, context)
(11) record TERMINATE received from parent;
(12) CurrentContext ← context;
(13) backTrack;

when received (VALUE, (xj ,dj ))
(14) if TERMINATE not received from parent:
(15) add (xj ,dj ) to CurrentContext;
(16) forall d ∈ Di,xl ∈Children do
(17) if context(d, xl ) incompatible with CurrentContext:
(18) lb(d, xl ) ← 0; t (d, xl ) ← 0;
(19) ub(d, xl ) ← Inf ; context(d, xl ) ← {}; endif; enddo;
(20) maintainThresholdInvariant;
(21) backTrack; endif;

when received (COST, xk , context, lb, ub)
(22) d ← value of xi in context;
(23) remove (xi ,d) from context;
(24) if TERMINATE not received from parent:
(25) forall (xj ,dj ) ∈ context and xj is not my neighbor do
(26) add (xj ,dj ) to CurrentContext;enddo;
(27) forall d ′ ∈ Di,xl ∈ Children do
(28) if context(d ′, xl ) incompatible with CurrentContext:
(29) lb(d ′, xl ) ← 0; t (d ′, xl ) ← 0;
(30) ub(d ′, xl ) ← Inf ; context(d ′, xl ) ← {};endif;enddo;endif;
(31) if context compatible with CurrentContext:
(32) lb(d, xk) ← lb;
(33) ub(d, xk) ← ub;
(34) context(d, xk) ← context ;
(35) maintainChildThresholdInvariant;
(36) maintainThresholdInvariant; endif;
(37) backTrack;

procedure backTrack
(38) if threshold ==UB:
(39) di ← d that minimizes UB(d);
(40) else if LB(di ) > threshold:
(41) di ← d that minimizes LB(d);endif;
(42) SEND (VALUE, (xi , di ))
(43) to each lower priority neighbor;
(44) maintainAllocationInvariant;
(45) if threshold ==UB:
(46) if TERMINATE received from parent
(47) or xi is root:
(48) SEND (TERMINATE,
(49) CurrentContext ∪ {(xi, di )})
(50) to each child;
(51) Terminate execution; endif;endif;
(52) SEND (COST, xi , CurrentContext, LB, UB)

to parent;

Fig. 3. Procedures for receiving messages (Adopt algorithm). Definitions of terms LB(d), UB(d), LB, UB are
given in the text.Algorithm 1: ADOPT Procedures
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ADOPT Messages

value(parent→ children ∪ pseudochildren, a): parent informs descendants that it
has taken value a

cost(child→ parent, lowerbound, upperbound, context): child informs parent of the
best cost of its assignement; attached context to detect obsolescence

threshold(parent→ child, t): minimum cost of solution in child is at least t

termination(parent→ children): sent when LB = UB

Gauthier Picard Distributed Constraint Optimization 12
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ADOPT Data Structures

1. Current context (agent view): values of higher priority constrained agents
xi xj . . .
a c . . .

2. Bounds (for each value, child)
xj a b c d

I lower bounds lb(xk) 3 0 0 0
I upper bounds ub(xk) ∞ ∞ ∞ ∞
I thresholds th(xk) 1 0 0 0

I contexts context(xk)

Stored contextes must be active: context ∈ currentcontext
If a context becomes no active, it is removed (lb← 0, th← 0, ub←∞)

Gauthier Picard Distributed Constraint Optimization 13
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ADOPT Bounds

xj

1 2 3

a b c

δ(b) =
∑

i∈curctx
cij(a, b)

δ(value) = cost with higher agents

lb1 ub1 lb2 ub2 lb3 ub3

[lbk, ubk] = cost of lower agents

LB(b) = δ(b) +
∑

xk∈children
lb(b, xk)

LB = min
b∈dj

LB(b)

UB(b) = δ(b) +
∑

xk∈children
ub(b, xk)

UB = min
b∈dj

UB(b)
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ADOPT Value Assignment

An ADOPT agent takes the value with minimum LB
Eager behavior:
I Agents may constantly change value
I Generates many context changes

Threshold:
I lower bound of the cost that children have from previous search
I parent distributes threshold among children
I incorrect distribution does not cause problems: the child with minor allocation would send a

COST to the parent later, and the parent will rebalance the threshold distribution

Gauthier Picard Distributed Constraint Optimization 15
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ADOPT Properties

For any xi, LB ≤ OPT (xl, ctx) ≤ UB
For any xi, its threshold reaches UB

For any xi, its final threshold is equal to OPT (xl, ctx)

→ ADOPT terminates with the optimal solution

Gauthier Picard Distributed Constraint Optimization 16
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ADOPT Example

4 variables (4 agents) x1, x2, x3 and x4 with D = {a, b}
4 binary identical cost functions
xi xj cost
a a 1
a b 2
b a 2
b b 0

Constraint graph

x1

x2

x3 x4
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ADOPT Example (cont.)

x1 = a

x2 = a

x3 = a x4 = a

x1 = b

x2 = a

x3 = a x4 = a

x1 = b
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[0, 0, x1 =
b, x2 = b] [0, 0, x2 = b]

x1 = b
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x3 = b x4 = b

[0, 0, x1 = b]
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Distributed Pseudotree Optimization Procedure (DPOP) [PETCU and FALTINGS, 2005]

3-phase distributed algorithm

PHASES MESSAGES

1. DFS Tree construction token passing

2. Utility phase: from leaves to root util (child → parent, constraint table
[-child])

3. Value phase: from root to leaves value (parent → children ∪ pseu-
dochildren, parent value)

Gauthier Picard Distributed Constraint Optimization 19
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DFS Tree Phase

Distributed DFS graph traversal: token, ID, neighbors(X)

1. X owns the token: adds its own ID and sends it in turn to each of its neighbors, which
become children

2. Y receives the token from X : it marks X as visited. First time Y receives the token then
parent(Y ) = X . Other IDs in token which are also neighbors(Y ) are pseudoparent. If Y
receives token from neighbor W to which it was never sent, W is pseudochild.

3. When all neighbors(X) visited, X removes its ID from token and sends it to parent(X).

A node is selected as root, which starts

When all neighbors of root are visited, the DFS traversal ends

Gauthier Picard Distributed Constraint Optimization 20
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DFS Tree Phase: Example

x1

x2 x3

x4

root

[x1] x1 parent of x2

x1

x2 x3

x4

[x1, x2]

x2 parent of x3
x1 pseudoparent of x3

x1

x2 x3

x4

[x1, x2, x3]
x3 parent of x4
x3 pseudoparent of x1

x1

x2

x3

x4
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Util Phase

Agent X :

receives from each child Yi a cost function: C(Yi)

combines (adds, joins) all these cost functions with the cost functions with parent(X)
and pseudoparents(X)

projects X out of the resulting cost function, and sends it to parent(X)

From the leaves to the root

Gauthier Picard Distributed Constraint Optimization 22
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Util Phase: Example

X

X T

a a 1
a b 2
b a 2
b b 0

X Y

a a 1
a b 2
b a 2
b b 0

X Z

a a 1
a b 2
b a 2
b b 0

parent

children

X Y Z T

a a a a 3
a a a b 4
a a b a 4
a a b b 5
a b a a 4
a b a b 5
a b b a 5
a b b b 6
b a a a 6
b a a b 4
b a b a 4
b a b b 2
b b a a 4
b b a b 2
b b b a 2
b b b b 0

add

All value combinations
Costs are the sum of
applicable costs

X Y Z T

a a a a 3
a a a b 4
a a b a 4
a a b b 5
a b a a 4
a b a b 5
a b b a 5
a b b b 6
b a a a 6
b a a b 4
b a b a 4
b a b b 2
b b a a 4
b b a b 2
b b b a 2
b b b b 0Remove X
Remove duplicates
Keep the min cost

Project out X
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Util Phase: Example
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Value Phase

1. The root finds the value that minimizes the received cost function in the util phase,
and informs its descendants (children ∪ pseudochildren)

2. Each agent waits to receive the value of its parent / pseudoparents

3. Keeping fixed the value of parent/pseudoparents, finds the value that minimizes the
received cost function in the Util phase

4. Informs of this value to its children/pseudochildren

This process starts at the root and ends at the leaves
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DTREE : DPOP for DCOPs without backedges

X

Y

Z W

Y Z
a a 1
a b 2
b a 2
b b 0

Y W
a a 1
a b 2
b a 2
b b 0

X Y
a a 1
a b 2
b a 2
b b 0

Y
a b
1 0

Y
a b
1 0

X
a b
2 0

X ← b

Y ← b

Z ← b W ← b

Optimal solution:

linear number of messages

message size: linear
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DPOP for any DCOP
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a b
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X ← b

X ← b

Y ← b

Z ← b W ← b

Optimal solution:

linear number of messages

message size: exponential
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Approximate Algorithms for DCOPs

Complete algorithms

e.g. ADOPT [MODI et al., 2005] and DPOP [PETCU and FALTINGS, 2005]

3 complete
7 slow

Aproximate algorithms exist (fast, but sub-optimal in many cases)

Search algorithms
I DBA [YOKOO, 2001], DSA [ZHANG et al., 2005], MGM [MAHESWARAN et al., 2004]

Inference algorithms
I Max-sum [FARINELLI et al., 2008]
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Why Approximate Algorithms

Motivations
I Often optimality in practical applications is not achievable
I Fast good enough solutions are all we can have

Example – Graph coloring
I Medium size problem (about 20 nodes, three colors per node)
I Number of states to visit for optimal solution in the worst case 320 = 3M states

Key problem
I Provides guarantees on solution quality
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Exemplar Application: Surveillance

Event Detection
I Vehicles passing on a road

Energy Constraints
I Sense/Sleep modes
I Recharge when sleeping

Coordination
I Activity can be detected by

single sensor
I Roads have different traffic

loads

Aim
I Focus on road with more

traffic load
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Centralized Local Greedy approaches

Greedy local search
I Start from random solution
I Do local changes if global solution improves
I Local: change the value of a subset of variables, usually one

−4−1 −1 −1

−1
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Centralized Local Greedy approaches

Problems
I Local minima
I Standard solutions: Random Walk, Simulated Annealing
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Distributed Local Greedy approaches

Local knowledge
Parallel execution
I A greedy local move might be harmful/useless
I Need coordination
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Distributed Stochastic Search Algorithm (DSA) [ZHANG et al., 2005]

Greedy local search with activation probability to mitigate issues with parallel executions

DSA-1: change value of one variable at time

Initialize agents with a random assignment and communicate values to neighbors
Each agent:
I Generates a random number and execute only if rnd less than activation probability
I When executing changes value maximizing local gain
I Communicate possible variable change to neighbors
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DSA-1: Execution Example
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DSA-1: Discussion

Extremely “cheap” (computation/communication)
Good performance in various domains
I e.g. target tracking [FITZPATRICK and MEERTENS, 2003; ZHANG et al., 2003]
I Shows an anytime property (not guaranteed)
I Benchmarking technique for coordination

Problems
I Activation probablity must be tuned [ZHANG et al., 2003]
I No general rule, hard to characterise results across domains
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Maximum Gain Message (MGM-1) [MAHESWARAN et al., 2004]

Coordinate to decide who is going to move
I Compute and exchange possible gains
I Agent with maximum (positive) gain executes

Analysis
I Empirically, similar to DSA
I More communication (but still linear)
I No Threshold to set
I Guaranteed to be monotonic (Anytime behavior)
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MGM-1: Example
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To sum up on local greedy approaches

Exchange local values for variables
I Similar to search based methods (e.g. ADOPT)

Consider only local information when maximizing
I Values of neighbors

Anytime behaviors

Could result in very bad solutions
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GDL-based approaches
Generalized Distributive Law [AJI and MCELIECE, 2000]
I Unifying framework for inference in Graphical models
I Builds on basic mathematical properties of semi-rings
I Widely used in Info theory, Statistical physics, Probabilistic models

Max-sum
I DCOP settings: maximise social welfare

AJI AND MCELIECE: THE GENERALIZED DISTRIBUTIVE LAW 327

TABLE I
SOME COMMUTATIVE SEMIRINGS. HERE

DENOTES AN ARBITRARY COMMUTATIVE RING, IS AN ARBITRARY FINITE
SET, AND DENOTES AN ARBITRARY DISTRIBUTIVE LATTICE

For example, consider the min-sum semiring in Table I
(entry 7). Here is the set of real numbers, plus the special
symbol “ .” The operation “ ” is defined as the operation of
taking the minimum, with the symbol playing the role of the
corresponding identity element, i.e., we define
for all . The operation “ ” is defined to be ordinary
addition [sic], with the real number playing the role of
the identity, and for all . Oddly enough, this
combination forms a semiring, because the distributive law is
equivalent to

which is easily seen to be true. We shall get a glimpse of the
importance of this semiring in Examples 2.3 and 4.3, below.
(In fact, semirings 5–8 are all isomorphic to each other; for ex-
ample, 5 becomes 6 via the mapping , and 6 becomes
7 under the mapping .)
Having briefly discussed commutative semirings, we now de-

scribe the “marginalize a product function” problem, which is
a general computational problem solved by the GDL. At the
end of the section we will give several examples of the MPF
problem, which demonstrate how it can occur in a surprisingly
wide variety of settings.
Let be variables taking values in the finite

sets , with for . If
is a subset of , we denote the

product by , the variable list
by , and the cardinality of , i.e., , by . We denote
the product simply by , and the variable list

simply by .
Now let be subsets of .

Suppose that for each , there is a function
, where is a commutative semiring. The

variable lists are called the local domains and the functions
are called the local kernels. We define the global kernel

as follows:

(2.1)

With this setup, the MPF problem is this: For one or more of
the indices , compute a table of the values of the

-marginalization of the global kernel , which is the function
, defined by

(2.2)

In (2.2), denotes the complement of the set relative to the
“universe” . For example, if , and if

, then

We will call the function defined in (2.2) the th objec-
tive function, or the objective function at . We note that the
computation of the th objective function in the obvious way
requires additions and multipli-
cations, for a total of arithmetic operations, where
denotes the size of the set . We shall see below (Section V)

that the algorithm we call the “generalized distributive law” can
often reduce this figure dramatically.
We conclude this section with some illustrative examples of

the MPF problem.

Example 2.1: Let , , , and be variables taking
values in the finite sets , , , and . Suppose

and are given functions of these vari-
ables, and that it is desired to compute tables of the functions

and defined by

ptThis is an instance of the MPF problem, if we define local
domains and kernels as follows:

local domain local kernel

The desired function is the objective function at local
domain , and is the objective function at local domain
. This is just a slightly altered version of Example 1.1, and
we shall see in Section IV that when the GDL is applied, the
“algorithm” of Example 1.1 results.

Example 2.2: Let , , , , , and be six vari-
ables, each assuming values in the binary set , and let

be a real-valued function of the variables ,
, and . Now consider the MPF problem (the commutative

semiring being the set of real numbers with ordinary addition
and multiplication) with the following local domains and
kernels:

local domain local kernel
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Max-Sum
Agents iteratively computes local functions that depend only on the variable they control

x1 x2

x3x4

m1→2

m2→1

m2→3m3→2

m3→4

m4→3

m4→1 m1→4
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Max-Sum
Agents iteratively computes local functions that depend only on the variable they control

x1 x2

x3x4

m1→2

m4→1
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Max-Sum
Agents iteratively computes local functions that depend only on the variable they control

x1 x2

x3x4

m1→2

m4→1

m1→2(x2) = maxx1(F12(x1, x2) +m4→1(x1))
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Max-Sum
Agents iteratively computes local functions that depend only on the variable they control

x1 x2

x3x4

m1→2

m4→1

m1→2(x2) = maxx1(F12(x1, x2) +m4→1(x1))

Shared constraint
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Max-Sum
Agents iteratively computes local functions that depend only on the variable they control

x1 x2

x3x4

m1→2

m4→1

m1→2(x2) = maxx1(F12(x1, x2) +m4→1(x1))

Shared constraint

All incoming messages
except x2
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Max-Sum
Agents iteratively computes local functions that depend only on the variable they control

x1 x2

x3x4

m1→2(x2) = maxx1(F12(x1, x2) +m4→1(x1))

Shared constraint

All incoming messages
except x2

z1(x1)
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Max-Sum
Agents iteratively computes local functions that depend only on the variable they control

x1 x2

x3x4

m1→2(x2) = maxx1(F12(x1, x2) +m4→1(x1))

Shared constraint

All incoming messages
except x2

z1(x1)

z1(x1) = m4→1(x1) +m2→1(x1)
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Max-Sum
Agents iteratively computes local functions that depend only on the variable they control

x1 x2

x3x4

m1→2(x2) = maxx1(F12(x1, x2) +m4→1(x1))

Shared constraint

All incoming messages
except x2

z1(x1)

z1(x1) = m4→1(x1) +m2→1(x1)

m4→1

m2→1
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Max-Sum
Agents iteratively computes local functions that depend only on the variable they control

x1 x2

x3x4

m1→2(x2) = maxx1(F12(x1, x2) +m4→1(x1))

Shared constraint

All incoming messages
except x2

z1(x1)

z1(x1) = m4→1(x1) +m2→1(x1)

m4→1

m2→1

All incoming messages
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Max-Sum
Agents iteratively computes local functions that depend only on the variable they control

x1 x2

x3x4

m1→2(x2) = maxx1(F12(x1, x2) +m4→1(x1))

Shared constraint

All incoming messages
except x2

z1(x1)

z1(x1) = m4→1(x1) +m2→1(x1)

m4→1

m2→1

All incoming messages

Choose
argmax

x1
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Max-Sum on acyclic graphs

Max-sum Optimal on acyclic
graphs
I Different branches are

independent
I Each agent can build a

correct estimation of its
contribution to the global
problem (z functions)

Message equations very similar
to Util messages in DPOP
I Sum messages from children

and shared constraint
I Maximize out agent variable
I GDL generalizes DPOP

[VINYALS et al., 2011]

x1

x2

x3

x4

m1→2(x2) = maxx1(F12(x1, x2) +m4→1(x1))
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Max-sum Performance

Good performance on loopy networks [FARINELLI et al., 2008]
I When it converges very good results

I Interesting results when only one cycle [WEISS, 2000]
I We could remove cycle but pay an exponential price (see DPOP)

Max-sum	Performance	
•  Good	performance	on	loopy	networks	[Farinelli	et	al.	08]		

–  When	it	converges	very	good	results	
•  Interes1ng	results	when	only	one	cycle	[Weiss	00]	

–  We	could	remove	cycle	but	pay	an	exponen1al	price	(see	
DPOP)	
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Max-Sum for low power devices
Low overhead
I Msgs number/size

Asynchronous computation
I Agents take decisions whenever new messages arrive

Robust to message loss

Max-Sum	for	low	power	devices	
•  Low	overhead		

–  Msgs	number/size	
•  Asynchronous	computa1on	

–  Agents	take	decisions	whenever	new	messages	arrive	
•  Robust	to	message	loss	

Gauthier Picard Distributed Constraint Optimization 44



Introduction Complete DCOP Approximate DCOP Synthesis References

Contents

Introduction

Complete Algorithms for DCOP

Approximate Algorithms for DCOP

Synthesis
Panorama

Gauthier Picard Distributed Constraint Optimization 45



Introduction Complete DCOP Approximate DCOP Synthesis References

Panorama

Algorithm Type Memory Messages Remarks

ADOPT COP Polynomial Exponential Complete

DPOP COP Exponential Linear Complete

DSA COP Linear ? Not complete

MGM COP Linear ? Not complete

Max-Sum COP Exponential Linear on acyclic Complete on trees

Table: DCOP algorithms
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