
Distributed Constraint Processing
An Introduction

Gauthier Picard

ONERA/DTIS

gauthier.picard@onera.fr

— Some contents taken from OPTMAS 2011 and OPTMAS-DCR 2014 Tutorials—

mailto:gauthier.picard@onera.fr
http://profs.scienze.univr.it/~farinelli/optmas11Tutorial/
http://www.cs.nmsu.edu/~wyeoh/optmas-dcr2014/docs/tutorial.pdf

Introduction ABT and Extensions Distributed Local Search Synthesis References

Contents

Introduction
Constraint Satisfaction Problems
Multi-Agent Approaches to DisCSP

ABT and Extensions
Asynchronous Algorithms for DisCSP
ABT
AWCS

Distributed Local Search
Classical Centralised LS Algorithms
Distributed Breakout Algorithm (DBA)
Environment, Reactive rules and Agents (ERA)

Synthesis
Panorama
Using Distributed Problem Solving

Gauthier Picard Distributed Constraint Processing 2

Introduction ABT and Extensions Distributed Local Search Synthesis References

Introduction

Motivations
Multi-agent systems are a way to model decentralised problem solving (privacy,
distribution)

Agents, having personal goals and constraints, negotiate as to reach a global equilibrium

⇒ distributed problem solving using agents

Approaches

Classical CSP solver extensions

Classical local search solver extensions

Gauthier Picard Distributed Constraint Processing 3

Introduction ABT and Extensions Distributed Local Search Synthesis References

Cooperative Decentralized Decision Making

Decentralised Decision Making
I Agents have to coordinate to perform best actions

Cooperative settings
I Agents form a team→ best actions for the team

Why DDM in cooperative settings is important
I Surveillance (target tracking, coverage)
I Robotics (cooperative exploration)
I Autonomous cars (cooperative traffic management)
I Scheduling (meeting scheduling)
I Rescue Operation (task assignment)

Gauthier Picard Distributed Constraint Processing 4

Introduction ABT and Extensions Distributed Local Search Synthesis References

Distributed Constraint Optimisation Problems (DCOPs) for DDM

Why DCOPs for Cooperative DDM?
Well defined problem
I Clear formulation that captures most important aspects
I Many solution techniques

I Optimal: ABT, ADOPT, DPOP, ...
I Approximate: DSA, MGM, Max-Sum, ...

Solution techniques can handle large problems
I compared for example to sequential decision making (MDP, POMDP)

Gauthier Picard Distributed Constraint Processing 5

Introduction ABT and Extensions Distributed Local Search Synthesis References

Modeling Problems as DCOP

Target Tracking

Modeling	Problems	as	DCOP	

•  Target	Tracking	

•  Mee1ng	Scheduling	

Meeting Scheduling

Modeling	Problems	as	DCOP	

•  Target	Tracking	

•  Mee1ng	Scheduling	

Why decentralize
I Robustness to failure and message

loss

Why decentralize
I Privacy

Gauthier Picard Distributed Constraint Processing 6

Introduction ABT and Extensions Distributed Local Search Synthesis References

Target Tracking as a DCOP

Variables→ Cameras
Domains→ Camera actions
I look left, look right

Constraints
I Overlapping cameras
I Related to targets

I Diabolik, Eva

Maximise sum of constraints

T1

T2

T3

{L,R}

{L,R}

{L,R}

D

E

Gauthier Picard Distributed Constraint Processing 7

Introduction ABT and Extensions Distributed Local Search Synthesis References

Meeting Scheduling as a DCOPMee1ng	Scheduling	

•  Why	decentralize	
–  Privacy	

Window 15:00 – 18:00
Duration 2h

Window13:00 – 20:00
Duration 1h

Better after 18:00

Gauthier Picard Distributed Constraint Processing 8

Introduction ABT and Extensions Distributed Local Search Synthesis References

Meeting Scheduling as a DCOPMee1ng	Scheduling	-	DCOP	

PL

BS PS

BC
BL

No overlap (Hard)

Equals (Hard)

Preference (Soft)

16:00

16:00 19:00

19:00

[15 – 18] [13 – 20]

[13 – 20]

[15 – 18]

16:00

[15 – 18]

Gauthier Picard Distributed Constraint Processing 8

Introduction ABT and Extensions Distributed Local Search Synthesis References

Benchmarking problems

Motivations
Analysis of complexity and optimality is not enough

Need to empirically evaluate algorithms on the same problem

Graph coloring

Simple to formalise very hard to solve
I Well known parameters that influence complexity

I Number of nodes, number of colors, density (number of link/number of nodes)

Many versions of the problem
I CSP, MaxCSP, COP

Gauthier Picard Distributed Constraint Processing 9

Introduction ABT and Extensions Distributed Local Search Synthesis References

Graph Coloring

Network of nodes

Nodes can take on various colors
Adjacent nodes should not have the same color
I If it happens this is a conflict

CSP

Gauthier Picard Distributed Constraint Processing 10

Introduction ABT and Extensions Distributed Local Search Synthesis References

Graph Coloring

Network of nodes

Nodes can take on various colors
Adjacent nodes should not have the same color
I If it happens this is a conflict

CSP Yes No

Gauthier Picard Distributed Constraint Processing 10

Introduction ABT and Extensions Distributed Local Search Synthesis References

Graph Coloring - MaxCSP

Optimization Problem

Natural extension of CSP

Minimise number of conflicts

0 −1 −4

Gauthier Picard Distributed Constraint Processing 11

Introduction ABT and Extensions Distributed Local Search Synthesis References

Weighted Graph Coloring - COP

Optimization Problem

Conflicts have a weight

Maximise the sum of weights of violated constraints

−3

COP

−2

−1

−1

−3

-2

−2

−1

−1

−3

-1

−2

−1

−1

Gauthier Picard Distributed Constraint Processing 12

Introduction ABT and Extensions Distributed Local Search Synthesis References

Constraint Satisfaction Problems [DECHTER, 2003]

Definition (CSP)
A CSP is a triplet 〈X,D,C〉 such as:

X = {x1, . . . , xn} is the set of variables to instantiate.

D = {D1, . . . , Dm} is the set of domains. Each variable xi is related to a domain of
value.

C = {c1, . . . , ck} is the set of constraints, which are relations between some variables
from X that constrain the values the variables can be simultaneously instantiated to.

Definition (Solution to a CSP)
A solution to a CSP is a complete assignment of values from D to variables from X such that
every constraint in C is satisfied.

Gauthier Picard Distributed Constraint Processing 13

Introduction ABT and Extensions Distributed Local Search Synthesis References

Issues in CSP

Classical CSPs
Constraint satisfaction is NP-complete in general

Constraints are generally expressed as binary constraints

The topology of a constraint-based problem can be represented by a constraint network,
in which vertexes represent variables and edges represent binary constraints between
variables

Extensions
Distribution : variables, constraints
I ex.: constraint ci belongs to stakeholder j, φ(ci) = j (or belongs(ci, j))

Dynamics : adding removing variables and/or constraints at runtime

Gauthier Picard Distributed Constraint Processing 14

Introduction ABT and Extensions Distributed Local Search Synthesis References

Multi-Agent Approaches to CSP

Complete and asynchronous solvers for combinatorial problems, within the DisCSP
framework, such as Asynchronous Backtracking (ABT) or Asynchronous
Weak-Commitment Search (AWCS)

Distributed local search methods, such as Distributed Breakout Algorithm (DBA) or
Environment, Reactive rules and Agents (ERA) approach

Gauthier Picard Distributed Constraint Processing 15

Introduction ABT and Extensions Distributed Local Search Synthesis References

Asynchronous Algorithms for DisCSP

Idea
Inspired by classical centralised algorithms to solve CSP

Each agent is responsible for assigning one (or several) variables

Agents propose values to some other agents (depending on the organisation i.e.
constraint network)

Main algorithm: Asynchronous backtracking (ABT) [YOKOO, 2001]

Agents will perform a distributed version of the backtracking procedure

ABT is complete

Extensions exist to handle dynamics

Definition (DisCSP or DCSP)
A DisCSP (or DCSP) is a 5-uplet 〈A,X,D,C, φ〉 where 〈X,D,C〉 is a CSP, A is a set of
agents and φ : X 7→ A is a function assigning variables from X to agents from A.

Gauthier Picard Distributed Constraint Processing 16

Introduction ABT and Extensions Distributed Local Search Synthesis References

Centralised Backtracking

15 Self-Organisation in Constraint Problem Solving 7

be simultaneously instantiated to. Therefore, making a decision consists in finding
a solution, for instance a complete and consistent assignment of X . Constraint satis-
faction is NP-complete in general. In DisCSP, distribution can affect either variables
or constraints. Most approaches consider the first kind of distribution by defining a
function ! (also defined by a predicate belongs) that bounds variables to stakehold-
ers (agents for example): !(ci) = j (or belongs(ci, j)) means that the constraint ci
belongs to stakeholder j. In most approaches, agents concurrently behave during
a loop consisting in waiting for messages and reacting to received messages. Such
messages contain information about the chosen values, the conflictual values, the
violated constraints or even organisational information such as priorities.The topol-
ogy of a constraint-based problem can be represented by a constraint network, in
which vertexes represent variables and edges represent binary constraints2 between
variables.

15.3.1.1 Asynchronous Algorithms for DisCSP

As mentioned before, there exist numerous centralised and efficient methods to
tackle constraint-based problems. Therefore, it is not surprising to utilise them as
inspiration for developing distributed constraint solvers. The most famous are the
classical backtracking, inspired by Algorithm 1 and the weak-commitment search
[34], which led to the first distributed constraint solvers, ABT (Asynchronous Back-
tracking) and AWCS (Asynchronous Weak-Commitment Search) [35].

i← 0
D′
i ← Di
while 0≤ i< n do

xi ← null
ok?← f alse
while not ok? and D′

i not empty do
a← a value from D′

i
remove a from D′

i
if a is in conflict with {x0, . . .,xi−1} thenxi ← a

ok?← true
end

end
if xi is null then backtrack

i← i−1
else

i← i+1
D′
i ← Di

end
end

Algorithm 1: A classical centralised backtracking search method

2 One can note that not all the constraints are binary; but for many problems, n-ary constraints can
be transformed into binary constraint by adding new constraints and variables [2].

Algorithm 1: A classical centralised backtracking search method

Gauthier Picard Distributed Constraint Processing 17

Introduction ABT and Extensions Distributed Local Search Synthesis References

Asynchronous Backtracking (ABT) [YOKOO, 2001]

First complete asynchronous algorithm for DisCSP solving
Asynchronous:
I All agents active, take a value and inform
I No agent has to wait for other agents

Total order among agents: to avoid cycles
I i < j < k means that: i more priority than j, j more priority than k

Constraints are directed, following total order

ABT plays in asynchronous distributed context the same role as backtracking in
centralized

Gauthier Picard Distributed Constraint Processing 18

Introduction ABT and Extensions Distributed Local Search Synthesis References

ABT: Directed Constraints

Directed: from higher to lower priority agents

Higher priority agent (j) informs the lower one (k) of its
assignment
Lower priority agent (k) evaluates the constraint with its own
assignment
I If permitted, no action
I else it looks for a value consistent with j

I If it exists, k takes that value
I else, the agent view of k is a nogood, backtrack

j

k

cjk

generates nogoods: eliminate values of k

Gauthier Picard Distributed Constraint Processing 19

Introduction ABT and Extensions Distributed Local Search Synthesis References

ABT: Directed Constraints

Directed: from higher to lower priority agents

Higher priority agent (j) informs the lower one (k) of its
assignment
Lower priority agent (k) evaluates the constraint with its own
assignment
I If permitted, no action
I else it looks for a value consistent with j

I If it exists, k takes that value
I else, the agent view of k is a nogood, backtrack

j

k

cjk

generates nogoods: eliminate values of k

Gauthier Picard Distributed Constraint Processing 19

Introduction ABT and Extensions Distributed Local Search Synthesis References

ABT: Nogoods

Definition (Nogood)
Conjunction of (variable, value) pairs of higher priority agents, that removes a value of the
current one

Example

x 6= y, dx = dy = {a, b}, x higher than y

When [x← a] arrives to y, this agent generates the nogood [x = a⇒ y 6= a] that
removes value a of dy
If x changes value, when [x← b] arrives to y, the nogood [x = a⇒ y 6= a] is
eliminated, value a is again available and a new nogood removing b is generated

Gauthier Picard Distributed Constraint Processing 20

Introduction ABT and Extensions Distributed Local Search Synthesis References

ABT: Nogood Resolution

When all values of variable y are removed, the conjunction of the left-hand sides of its
nogoods is also a nogood

Resolution: the process of generating the new nogood

Example

x 6= y, z 6= y, dx = dy = dz = {a, b}, x, z higher than y

x = a⇒ y 6= a x = a ∧ z = b is a nogood

z = b⇒ y 6= b x = a⇒ z 6= b (assuming x higher than z)

Gauthier Picard Distributed Constraint Processing 21

Introduction ABT and Extensions Distributed Local Search Synthesis References

How ABT works

ABT agents: asynchronous action, spontaneous assignment

Assignment: j takes value a, j informs lower priority agents

Backtrack: k has no consistent values with high priority agents, k resolves nogoods and
sends a backtrack message

New links: j receives a nogood mentioning i, unconnected with j ; j asks i to set up a
link

Stop: “no solution” detected by an agent, stop

Solution: when agents are silent for a while (quiescence), every constraint is satisfied
→ solution; detected by specialized algorithms

Gauthier Picard Distributed Constraint Processing 22

Introduction ABT and Extensions Distributed Local Search Synthesis References

ABT: Messages

Ok?(i→ k, a):
I i informs k that it takes value a

Ngd(k → j, i = a⇒ j 6= b)
I all k values are forbidden
I k requests j to backtrack
I k forgets j value
I k takes some value
I j may detect obsolescence

Addl(j → i):
I set a link from i to j, to know i value

Stop:
I there is no solution

i

j

k

Gauthier Picard Distributed Constraint Processing 23

Introduction ABT and Extensions Distributed Local Search Synthesis References

ABT: Messages

Ok?(i→ k, a):
I i informs k that it takes value a

Ngd(k → j, i = a⇒ j 6= b)
I all k values are forbidden
I k requests j to backtrack
I k forgets j value
I k takes some value
I j may detect obsolescence

Addl(j → i):
I set a link from i to j, to know i value

Stop:
I there is no solution

i

j

k

Gauthier Picard Distributed Constraint Processing 23

Introduction ABT and Extensions Distributed Local Search Synthesis References

ABT: Messages

Ok?(i→ k, a):
I i informs k that it takes value a

Ngd(k → j, i = a⇒ j 6= b)
I all k values are forbidden
I k requests j to backtrack
I k forgets j value
I k takes some value
I j may detect obsolescence

Addl(j → i):
I set a link from i to j, to know i value

Stop:
I there is no solution

i

j

k

Gauthier Picard Distributed Constraint Processing 23

Introduction ABT and Extensions Distributed Local Search Synthesis References

ABT: Messages

Ok?(i→ k, a):
I i informs k that it takes value a

Ngd(k → j, i = a⇒ j 6= b)
I all k values are forbidden
I k requests j to backtrack
I k forgets j value
I k takes some value
I j may detect obsolescence

Addl(j → i):
I set a link from i to j, to know i value

Stop:
I there is no solution

i

j

k

Gauthier Picard Distributed Constraint Processing 23

Introduction ABT and Extensions Distributed Local Search Synthesis References

ABT: Messages

Ok?(i→ k, a):
I i informs k that it takes value a

Ngd(k → j, i = a⇒ j 6= b)
I all k values are forbidden
I k requests j to backtrack
I k forgets j value
I k takes some value
I j may detect obsolescence

Addl(j → i):
I set a link from i to j, to know i value

Stop:
I there is no solution

i

j

k

Gauthier Picard Distributed Constraint Processing 23

Introduction ABT and Extensions Distributed Local Search Synthesis References

ABT Procedures
algorithms for distributed constraint satisfaction 193

when received (ok?, (xj , dj)) do — (i)
revise agent view;
check agent view;

end do;

when received (nogood, xj , nogood) do — (ii)
record nogood as a new constraint;
when nogood contains an agent xk that is not its neighbor
do request xk to add xi as a neighbor,
and add xk to its neighbors; end do;

old value ← current value; check agent view;
when old value = current value do

send (ok?, (xj , current value)) to xj ; end do; end do;

procedure check agent view
when agent view and current value are not consistent do
if no value in Di is consistent with agent view then backtrack;
else select d ∈ Di where agent view and d are consistent;
current value ← d;
send (ok?, (xi, d)) to neighbors; end if; end do;

procedure backtrack
generate a nogood V — (iii)
when V is an empty nogood do
broadcast to other agents that there is no solution,

terminate this algorithm; end do;
select #xj!dj$ where xj has the lowest priority in a nogood;
send (nogood, xi, V) to xj ;
remove #xj!dj$ from agent view;
check agent view;

Figure 4. Procedures for receiving messages (asynchronous backtracking).

with the higher priority agents according to its agent view, we cannot use a simple
control method such as xi orders a higher priority agent to change its value, since
the agent view may be obsolete. Therefore, each agent needs to generate and com-
municate a new nogood, and the receiver of the new nogood must check whether
the nogood is actually violated based on its own agent view.
The completeness of the algorithm (i.e., always finds a solution if one exists, and

terminates if no solution exists) is guaranteed [27]. The outline of the proof is as
follows. First, we can show that agent x1, which has the highest priority, never falls
into an infinite processing loop. Then, assuming that agents x1 to xk−1 #k > 2$ are
in a stable state, we can show that agent xk never falls into an infinite processing
loop. Therefore, we can prove that the agents never fall into an infinite processing
loop by using mathematical induction.

5.1.2. Example. We show an example of an algorithm execution in Figure 5. In
Figure 5 (a), after receiving ok? messages from x1 and x2, the agent view of x3
will be ! 1$! #x2! 2$'. Since there is no possible value for x3 consistent with this
agent view, a new nogood ! 1$! #x2! 2$' is generated. x3 chooses the lowest prior-

Algorithm 2: ABT Procedures

194 yokoo and hirayama

(a)

X1

X3
{1, 2}

{2}
X2

(ok?, (X2, 2))(ok?, (X1, 1))
agent_view
 {(X1, 1),(X2, 2)}

{1, 2}

X1

X3
{1, 2}

{2}
X2

(nogood,{(X1, 1)})

(c)

{1, 2}

(b)

X1

X3
{1, 2}

{2}
X2

(nogood,
 {(X1, 1),(X2, 2)})

new link{1, 2}
agent_view
 {(X1, 1)}

add neighbor request

Figure 5. Example of an algorithm execution (asynchronous backtracking).

ity agent in the nogood, i.e., x2, and sends a nogood message. After receiving this no-
good message, x2 records it. This nogood, !"x1! 1#! "x2! 2#$, contains agent x1, which
is not a neighbor of x2. Therefore, a new link must be added between x1 and x2. x2
requests x1 to send x1’s value to x2, adds "x1! 1# to its agent view (Figure 5 (b)), and
checks whether its value is consistent with the agent view. The agent view !"x1! 1#$
and the assignment "x2! 2# violate the received nogood !"x1! 1#! "x2! 2#$. However,

Gauthier Picard Distributed Constraint Processing 24

Introduction ABT and Extensions Distributed Local Search Synthesis References

ABT: Correctness and Completeness

Correctness
I silent network⇔ all constraints are satisfied

Completeness
I ABT performs an exhaustive traversal of the search space
I Parts not searched: those eliminated by nogoods
I Nogoods are legal: logical consequences of constraints
I Therefore, either there is no solution⇒ ABT generates the empty nogood, or it finds a

solution if exists

Gauthier Picard Distributed Constraint Processing 25

Introduction ABT and Extensions Distributed Local Search Synthesis References

ABT: Remarks

Fixed ordered organisation
I Agents only communicate with agents with lower priority for ok?
I Agents only communicate with the agent with direct higher priority for nogood

No termination procedure is given (but it is easily implemented using Dijkstra’s tokens)

Really distributable

What if x0 disappears?...

Extensions and Filiation
Changing ordering in every conflict with AWCS [YOKOO, 2001]

Satisfaction→ Optimisation with ADOPT (Asynchronous B&B) [MODI et al., 2005] or APO
[MAILLER and LESSER, 2006]

Adding new agents at runtime in DynAPO [MAILLER, 2005]

Gauthier Picard Distributed Constraint Processing 26

Introduction ABT and Extensions Distributed Local Search Synthesis References

Asynchronous Weak-Commitment Search (AWCS) [YOKOO, 2001]

algorithms for distributed constraint satisfaction 195

there is no other possible value for x2. Therefore, x2 generates a new nogood
!"x1! 1#$, and sends a nogood message to x1 (Figure 5 (c)).

5.2. Asynchronous weak-commitment search

5.2.1. Algorithm. One limitation of the asynchronous backtracking algorithm is
that the agent/variable ordering is statically determined. If the value selection of a
higher priority agent is bad, the lower priority agents need to perform an exhaus-
tive search to revise the bad decision. The asynchronous weak-commitment search
algorithm [25, 27] introduces the min-conflict heuristic to reduce the risk of mak-
ing bad decisions. Furthermore, the agent ordering is dynamically changed so that
a bad decision can be revised without performing an exhaustive search.
In Figure 6, the procedure executed at agent xi for checking agent view is de-

scribed (other procedures are basically identical to those for the asynchronous back-
tracking algorithm). The differences between this procedure and that for the asyn-
chronous backtracking algorithm are as follows.

— A priority value is determined for each variable, and the priority value is com-
municated through the ok? message. The priority order is determined by the
communicated priority values, i.e., the variable/agent with a larger priority
value has higher priority (ties are broken using the alphabetical order).

procedure check agent view
when agent view and current value are not consistent do
if no value in Di is consistent with agent view then backtrack;
else select d ∈ Di where agent view and d are consistent

and d minimizes the number of constraint violations
with lower priority agents; — (i)

current value ← d;
send (ok?, (xi, d, current priority)) to neighbors;

end if; end do;

procedure backtrack
generate a nogood V ;
when V is an empty nogood do
broadcast to other agents that there is no solution,
terminate this algorithm; end do;

when V is a new nogood do — (ii)
send V to the agents in the nogood;
current priority ← 1+ pmax,

where pmax is the maximal priority value of neighbors;
select d ∈ Di where agent view and d are consistent,
and d minimizes the number of constraint violations
with lower priority agents;

current value ← d;
send (ok?, (xi, d, current priority)) to neighbors; end do;

Figure 6. Procedure for checking agent view (asynchronous weak-commitment search).

Algorithm 3: AWCS Procedures

196 yokoo and hirayama

— If the current value is not consistent with the agent view, i.e., some constraint
with variables of higher priority agents is not satisfied, the agent changes its
value using the min-conflict heuristic (Figure 6 (i)).

— When xi cannot find a consistent value with its agent view, xi sends nogood
messages to other agents, and increases its priority value (Figure 6 (ii)). If xi

cannot generate a new nogood, xi will not change its priority value but will wait
for the next message. This procedure is needed to guarantee the completeness
of the algorithm.

The completeness of the algorithm is guaranteed. An overview of the proof is as
follows. The priority values are changed if and only if a new nogood is found. Since
the number of possible nogoods is finite, the priority values cannot be changed
infinitely. Therefore, after a certain time point, the priority values will be stable.
If the priority values are stable, the asynchronous weak-commitment search algo-
rithm is basically identical to the asynchronous backtracking algorithm. Since the
asynchronous backtracking is guaranteed to be complete, the asynchronous weak-
commitment search algorithm is also complete.

Note that the completeness of the algorithm is guaranteed by the fact that the
agents record all nogoods found so far. In practice, we can restrict the number of
recorded nogoods, i.e., each agent records only a fixed number of the most recently
found nogoods.

5.2.2. Example. An execution of the algorithm is illustrated using the distributed
4-queens problem. The initial values are shown in Figure 7 (a). Agents communicate
these values with each other. The values within parentheses represent the priority
values. The initial priority values are 0. Since the priority values are equal, the
priority order is determined by the alphabetical order of the identifiers. Therefore,
only the value of x4 is not consistent with its agent view.
Since there is no consistent value, x4 sends nogood messages and increases its

priority value. In this case, the value minimizing the number of constraint violations
is 3, since it conflicts with x3 only. Therefore, x4 selects 3 and sends ok? messages
to the other agents (Figure 7 (b)). Then, x3 tries to change its value. Since there is
no consistent value, x3 sends nogood messages, and increases its priority value. In
this case, the value that minimizes the number of constraint violations is 1 or 2. In
this example, x3 selects 1 and sends ok? messages to the other agents (Figure 7 (c)).
After that, x1 changes its value to 2, and a solution is obtained (Figure 7 (d)).

x1
x2
x3
x4

(0)

(a) (b) (c) (d)

(0)
(0)
(0)

(0)
(0)
(0)
(1)

(0)
(0)
(2)
(1)

(0)
(0)
(2)
(1)

Figure 7. Example of an algorithm execution (asynchronous weak-commitment search).

196 yokoo and hirayama

— If the current value is not consistent with the agent view, i.e., some constraint
with variables of higher priority agents is not satisfied, the agent changes its
value using the min-conflict heuristic (Figure 6 (i)).

— When xi cannot find a consistent value with its agent view, xi sends nogood
messages to other agents, and increases its priority value (Figure 6 (ii)). If xi

cannot generate a new nogood, xi will not change its priority value but will wait
for the next message. This procedure is needed to guarantee the completeness
of the algorithm.

The completeness of the algorithm is guaranteed. An overview of the proof is as
follows. The priority values are changed if and only if a new nogood is found. Since
the number of possible nogoods is finite, the priority values cannot be changed
infinitely. Therefore, after a certain time point, the priority values will be stable.
If the priority values are stable, the asynchronous weak-commitment search algo-
rithm is basically identical to the asynchronous backtracking algorithm. Since the
asynchronous backtracking is guaranteed to be complete, the asynchronous weak-
commitment search algorithm is also complete.

Note that the completeness of the algorithm is guaranteed by the fact that the
agents record all nogoods found so far. In practice, we can restrict the number of
recorded nogoods, i.e., each agent records only a fixed number of the most recently
found nogoods.

5.2.2. Example. An execution of the algorithm is illustrated using the distributed
4-queens problem. The initial values are shown in Figure 7 (a). Agents communicate
these values with each other. The values within parentheses represent the priority
values. The initial priority values are 0. Since the priority values are equal, the
priority order is determined by the alphabetical order of the identifiers. Therefore,
only the value of x4 is not consistent with its agent view.
Since there is no consistent value, x4 sends nogood messages and increases its

priority value. In this case, the value minimizing the number of constraint violations
is 3, since it conflicts with x3 only. Therefore, x4 selects 3 and sends ok? messages
to the other agents (Figure 7 (b)). Then, x3 tries to change its value. Since there is
no consistent value, x3 sends nogood messages, and increases its priority value. In
this case, the value that minimizes the number of constraint violations is 1 or 2. In
this example, x3 selects 1 and sends ok? messages to the other agents (Figure 7 (c)).
After that, x1 changes its value to 2, and a solution is obtained (Figure 7 (d)).

x1
x2
x3
x4

(0)

(a) (b) (c) (d)

(0)
(0)
(0)

(0)
(0)
(0)
(1)

(0)
(0)
(2)
(1)

(0)
(0)
(2)
(1)

Figure 7. Example of an algorithm execution (asynchronous weak-commitment search).

196 yokoo and hirayama

— If the current value is not consistent with the agent view, i.e., some constraint
with variables of higher priority agents is not satisfied, the agent changes its
value using the min-conflict heuristic (Figure 6 (i)).

— When xi cannot find a consistent value with its agent view, xi sends nogood
messages to other agents, and increases its priority value (Figure 6 (ii)). If xi

cannot generate a new nogood, xi will not change its priority value but will wait
for the next message. This procedure is needed to guarantee the completeness
of the algorithm.

The completeness of the algorithm is guaranteed. An overview of the proof is as
follows. The priority values are changed if and only if a new nogood is found. Since
the number of possible nogoods is finite, the priority values cannot be changed
infinitely. Therefore, after a certain time point, the priority values will be stable.
If the priority values are stable, the asynchronous weak-commitment search algo-
rithm is basically identical to the asynchronous backtracking algorithm. Since the
asynchronous backtracking is guaranteed to be complete, the asynchronous weak-
commitment search algorithm is also complete.

Note that the completeness of the algorithm is guaranteed by the fact that the
agents record all nogoods found so far. In practice, we can restrict the number of
recorded nogoods, i.e., each agent records only a fixed number of the most recently
found nogoods.

5.2.2. Example. An execution of the algorithm is illustrated using the distributed
4-queens problem. The initial values are shown in Figure 7 (a). Agents communicate
these values with each other. The values within parentheses represent the priority
values. The initial priority values are 0. Since the priority values are equal, the
priority order is determined by the alphabetical order of the identifiers. Therefore,
only the value of x4 is not consistent with its agent view.
Since there is no consistent value, x4 sends nogood messages and increases its

priority value. In this case, the value minimizing the number of constraint violations
is 3, since it conflicts with x3 only. Therefore, x4 selects 3 and sends ok? messages
to the other agents (Figure 7 (b)). Then, x3 tries to change its value. Since there is
no consistent value, x3 sends nogood messages, and increases its priority value. In
this case, the value that minimizes the number of constraint violations is 1 or 2. In
this example, x3 selects 1 and sends ok? messages to the other agents (Figure 7 (c)).
After that, x1 changes its value to 2, and a solution is obtained (Figure 7 (d)).

x1
x2
x3
x4

(0)

(a) (b) (c) (d)

(0)
(0)
(0)

(0)
(0)
(0)
(1)

(0)
(0)
(2)
(1)

(0)
(0)
(2)
(1)

Figure 7. Example of an algorithm execution (asynchronous weak-commitment search).

196 yokoo and hirayama

— If the current value is not consistent with the agent view, i.e., some constraint
with variables of higher priority agents is not satisfied, the agent changes its
value using the min-conflict heuristic (Figure 6 (i)).

— When xi cannot find a consistent value with its agent view, xi sends nogood
messages to other agents, and increases its priority value (Figure 6 (ii)). If xi

cannot generate a new nogood, xi will not change its priority value but will wait
for the next message. This procedure is needed to guarantee the completeness
of the algorithm.

The completeness of the algorithm is guaranteed. An overview of the proof is as
follows. The priority values are changed if and only if a new nogood is found. Since
the number of possible nogoods is finite, the priority values cannot be changed
infinitely. Therefore, after a certain time point, the priority values will be stable.
If the priority values are stable, the asynchronous weak-commitment search algo-
rithm is basically identical to the asynchronous backtracking algorithm. Since the
asynchronous backtracking is guaranteed to be complete, the asynchronous weak-
commitment search algorithm is also complete.
Note that the completeness of the algorithm is guaranteed by the fact that the

agents record all nogoods found so far. In practice, we can restrict the number of
recorded nogoods, i.e., each agent records only a fixed number of the most recently
found nogoods.

5.2.2. Example. An execution of the algorithm is illustrated using the distributed
4-queens problem. The initial values are shown in Figure 7 (a). Agents communicate
these values with each other. The values within parentheses represent the priority
values. The initial priority values are 0. Since the priority values are equal, the
priority order is determined by the alphabetical order of the identifiers. Therefore,
only the value of x4 is not consistent with its agent view.
Since there is no consistent value, x4 sends nogood messages and increases its

priority value. In this case, the value minimizing the number of constraint violations
is 3, since it conflicts with x3 only. Therefore, x4 selects 3 and sends ok? messages
to the other agents (Figure 7 (b)). Then, x3 tries to change its value. Since there is
no consistent value, x3 sends nogood messages, and increases its priority value. In
this case, the value that minimizes the number of constraint violations is 1 or 2. In
this example, x3 selects 1 and sends ok? messages to the other agents (Figure 7 (c)).
After that, x1 changes its value to 2, and a solution is obtained (Figure 7 (d)).

x1
x2
x3
x4

(0)

(a) (b) (c) (d)

(0)
(0)
(0)

(0)
(0)
(0)
(1)

(0)
(0)
(2)
(1)

(0)
(0)
(2)
(1)

Figure 7. Example of an algorithm execution (asynchronous weak-commitment search).

Gauthier Picard Distributed Constraint Processing 27

Introduction ABT and Extensions Distributed Local Search Synthesis References

Distributed Local Search Approaches

Local Search (LS)

LS algorithms explore the search space from state to state

Always tend to improve the current state of the system

Can naturally handle dynamics (adding constraints, changing values)

Time efficient

Not complete and require some subtle parameter tuning

10 Glize and Picard

The fixed organisation in the previous algorithms reduces drastically the principle
of locality (see Sect. 15.2.1) and therefore the robustness to agent disappearance and
dysfunctions. In fact, organisations such as total order or pseudo-tree organisation
may lead to a centralised failure point. However, the actions of the agents are local:
agents only change their own values, and directly communicate using asynchronous
messages. In these complete algorithms, the only source of non-determinism is the
order of agents’ actions, but not the actions themselves, due to the asynchronous ex-
ecution. However, AWCS is a first step towards self-organisation: the order changes
during the solving process with respect to the sequence of events. In APO ap-
proaches, the mediator role depends also on the sequence of events and the problem
topology.

15.3.2 Distributed Local Search Approaches

Local search (LS) algorithms explore the search space from state to state, from com-
plete assignment to complete assignment. They mainly behave as presented in Al-
gorithm 2. The main advantage of this anytime behaviour is that it can naturally
handle dynamics (adding constraints, changing values) because it always tends to
improve the current state of the system, and more specifically, when the state has
been altered by environmental disturbances. Even if often time efficient, they are
not complete and require some subtle parameter tuning.

choose an initial assignment s(0)
while s(t) not terminal do

select an acceptable move m(t) to another assignment
apply move m(t) to reach s(t+1)
t := t+1

end
Algorithm 2: A generic centralised local search algorithm

15.3.2.1 Classical Centralised LS Algorithms

Many methods or metaheuristics exist to implement LS, which involve different
termination criteria and acceptable moves. Such termination criteria can be time,
number of iteration or a distance to the solution, for instance. In general, such al-
gorithms are used for global optimisation, and are really efficient, but not complete.
In tabu search [10], acceptable moves are moves that diminish the cost of the so-
lution (for example the number of violated constraints), but that are not in a tabu
list consisting of the n last visited states as to avoid local minima. The size n of the
list strongly depends on the search space configuration, and is often difficult to set.
Simulated annealing [17] specifies acceptable moves using an analogy to thermo-

Algorithm 4: A generic centralised local search algorithm

Gauthier Picard Distributed Constraint Processing 28

Introduction ABT and Extensions Distributed Local Search Synthesis References

Classical Centralised LS Algorithms

Common points

Initial point (ex: randomly chosen)

Termination criterion (ex: limit time, δ improvement)

Acceptable move (ex: +ε)

Famous LS Methods
Tabu search [GLOVER and LAGUNA, 1997]

Simulated annealing [KIRKPATRICK et al., 1983]

Iterative Breakout method [MORRIS, 1993]

Gauthier Picard Distributed Constraint Processing 29

Introduction ABT and Extensions Distributed Local Search Synthesis References

Distributed Breakout Algorithm (DBA)

198 yokoo and hirayama

x1

x2

x3 x4

x5

x6

Figure 8. Example of a distributed graph-coloring problem.

Then, the improvements of x1!x3!x4, and x6 are 1, and the improvements of x2
and x5 are 0. The agents that have the right to change their values are x1 and x3
(each of which precedes in alphabetical order within its own neighborhood). These
agents change their value from white to black (Figure 10 (c)). Then, the improve-
ment of x2 is 4, while the improvements of the other agents are 0. Therefore, x2
changes its value to white, and all constraints are satisfied (Figure 10 (d)).

wait ok? mode — (i)
when received (ok?, xj , dj) do
add (xj , dj) to agent view;
when received ok? messages from all neighbors do

send improve;
goto wait improve mode; end do;

goto wait ok mode; end do;

procedure send improve
current eval ← evaluation value of current value;
my improve ← possible maximal improvement;
new value ← the value which gives the maximal improvement;
send (improve, xi, my improve, current eval) to neighbors;

wait improve? mode — (ii)
when received (improve, xj , improve, eval) do
record this message;
when received improve? messages from all neighbors do
send ok; clear agent view;
goto wait ok mode; end do;

goto wait improve mode; end do;

procedure send ok
when its improvement is largest among neighbors do
current value ← new value; end do;

when it is in a quasi-local-minimum do
increase the weights of constraint violations; end do;

send (ok?, xi, current value) to neighbors;

Figure 9. Procedures for receiving messages (distributed breakout).

Algorithm 5: DBA Message Handler

algorithms for distributed constraint satisfaction 199

x1

x2

x3 x4

x5

x6

(a) (b)

2x1

x2

x3 x4

x5

x62

2 2

2 2

(d)

x1

x2

x3 x4

x5

x6

(c)

x1

x2

x3 x4

x5

x6

2 2

Figure 10. Example of algorithm execution (distributed breakout).

5.4. Distributed consistency algorithm

Achieving 2-consistency by multiple agents is relatively straightforward, since the al-
gorithm can be achieved by the iteration of local processes. In [19], a distributed
system that achieves arc-consistency for resource allocation tasks was developed.
This system also maintains arc-consistency, i.e., it can re-achieve arc-consistency
after dynamic changes in variables/values/constraints with a small amount of com-
putational effort by utilizing dependencies.
Also, a higher degree of consistency can be achieved using the hyper-resolution-

based consistency algorithm [5]. In [29], a distributed consistency algorithm that
achieves k-consistency is described. In this algorithm, agents communicate nogoods
among themselves, and generate new nogoods whose length are less than k using
the hyper-resolution rule.

6. Extensions of problem formalization

6.1. Handling multiple local variables

So far, we assume that each agent has only one local variable. Although the devel-
oped algorithms can be applied to the situation where one agent has multiple local
variables by the following methods, both methods are neither efficient nor scalable
to large problems.

Method 1: each agent finds all solutions to its local problem first.
By finding all solutions, the given problem can be re-formalized as a distributed
CSP, in which each agent has one local variable whose domain is a set of obtained
local solutions. Then, agents can apply algorithms for the case of a single local
variable. The drawback of this method is that when a local problem becomes
large and complex, finding all the solutions of a local problem becomes virtually
impossible.

Method 2: an agent creates multiple virtual agents, each of which corresponds to
one local variable, and simulates the activities of these virtual agents.
For example, if agent k has two local variables xi!xj , we assume that there exist
two virtual agents, each of which corresponds to either xi or xj . Then, agent
k simulates the concurrent activities of these two virtual agents. In this case,

algorithms for distributed constraint satisfaction 199

x1

x2

x3 x4

x5

x6

(a) (b)

2x1

x2

x3 x4

x5

x62

2 2

2 2

(d)

x1

x2

x3 x4

x5

x6

(c)

x1

x2

x3 x4

x5

x6

2 2

Figure 10. Example of algorithm execution (distributed breakout).

5.4. Distributed consistency algorithm

Achieving 2-consistency by multiple agents is relatively straightforward, since the al-
gorithm can be achieved by the iteration of local processes. In [19], a distributed
system that achieves arc-consistency for resource allocation tasks was developed.
This system also maintains arc-consistency, i.e., it can re-achieve arc-consistency
after dynamic changes in variables/values/constraints with a small amount of com-
putational effort by utilizing dependencies.
Also, a higher degree of consistency can be achieved using the hyper-resolution-

based consistency algorithm [5]. In [29], a distributed consistency algorithm that
achieves k-consistency is described. In this algorithm, agents communicate nogoods
among themselves, and generate new nogoods whose length are less than k using
the hyper-resolution rule.

6. Extensions of problem formalization

6.1. Handling multiple local variables

So far, we assume that each agent has only one local variable. Although the devel-
oped algorithms can be applied to the situation where one agent has multiple local
variables by the following methods, both methods are neither efficient nor scalable
to large problems.

Method 1: each agent finds all solutions to its local problem first.
By finding all solutions, the given problem can be re-formalized as a distributed
CSP, in which each agent has one local variable whose domain is a set of obtained
local solutions. Then, agents can apply algorithms for the case of a single local
variable. The drawback of this method is that when a local problem becomes
large and complex, finding all the solutions of a local problem becomes virtually
impossible.

Method 2: an agent creates multiple virtual agents, each of which corresponds to
one local variable, and simulates the activities of these virtual agents.
For example, if agent k has two local variables xi!xj , we assume that there exist
two virtual agents, each of which corresponds to either xi or xj . Then, agent
k simulates the concurrent activities of these two virtual agents. In this case,

Gauthier Picard Distributed Constraint Processing 30

Introduction ABT and Extensions Distributed Local Search Synthesis References

Distributed Breakout Algorithm (DBA) (cont.)

Principles of DBA [YOKOO, 2001]

Distribution difficulties:
(i) if two neighbouring agents concurrently change their value, the system may oscillate
(ii) detecting the fact that the whole system is trapped in local minimum requires the agents to

globally exchange data

DBA answers:
(i) for a given neighbourhood, only the agent that can maximally improve the evaluation value

is given the right to change its value
(ii) agents only detects quasi-local-minimum, which is a weaker local-minimum that can be

detected only by local interactions

Gauthier Picard Distributed Constraint Processing 31

Introduction ABT and Extensions Distributed Local Search Synthesis References

Distributed Breakout Algorithm (DBA) (cont.)

Remarks
Distributed version of the iterative breakout algorithm

Two-mode behaviour alternating between exchange of potential improvement and
exchange of assignments

3 There is no order over the agents society→ neighbourhoods
The system halts if a solution is found or if the weight of constraints have reached a
predefined upper bound
→ the only difficult parameter to set

7 DBA is not complete

3 DBA is able to detect the termination or a global solution only by reasoning on local data.

Gauthier Picard Distributed Constraint Processing 32

Introduction ABT and Extensions Distributed Local Search Synthesis References

Environment, Reactive rules and Agents (ERA) [LIU et al., 2002]

Components

A discrete grid environment, that is used as a communication medium
Agents that evolves in some regions of the grid (their domain)
I Agents move synchronously
I Agents cannot move in the domain of other agents, but can mark it with the number of

potential conflicts
I These marks represents therefore the number of violated constraints if an agent chooses

the marked cell

Rules (moves) that agent follow to reach an equilibrium
I 3 possible actions

I least-move: the next cell is the one with minimum cost
I better-move: the next cell is randomly chosen and if it has less conflicts than the actual one the

agent moves else the agent rests
I random-move: the next cell is randomly chosen

I A decision consists in a random Monte-Carlo choice of the action to perform

Gauthier Picard Distributed Constraint Processing 33

Introduction ABT and Extensions Distributed Local Search Synthesis References

Environment, Reactive rules and Agents (ERA) [LIU et al., 2002] (cont.)

15 Self-Organisation in Constraint Problem Solving 13

ABT, AWCS or DBA, agents move synchronously as presented in Algorithm 4.
Each agent, when it chooses a position within its environment, increments the con-
flict values of the cells with which it is in conflict, with respect with the constraints
of the DisCSP, and decrements the values of the cells with which it is not in conflict
anymore. These values represents therefore the number of violated constraints if an
agent chooses the marked cell. Agents move by reasoning as in local search meth-
ods. There are three different possible move behaviours: least-move, better-move
and random-move; each of them being associated with a probability, as in simu-
lated annealing. A decision consists in a random Monte-Carlo choice of the action
to perform. The least-move action move the agent to the cell with minimum cost.
The better-move action randomly chooses a cell; if its cost is better than the current
one, the agent moves, else it rests. Finally, the random-move action aims at exiting
from local minima in which there is no better cell, by accepting to move even if it
degrades the current solution.

t ← 0
initialise the grid to 0 violation in each cell; foreach agent i do

randomly move to a cell of row i
end
while t < tmax and no solution do

foreach agent i do
select a move behaviour
compute new position
decrease markers in all cells with past violations
increase markers in all cells with new violations

end
t ← t+1

end
Algorithm 4: ERA outline (extracted from [18])

When every agent is on a cell with a cost equal to 0, the solution is found. As
the environment is used to communicate and coordinate the agents, there is no asyn-
chronous mechanisms and message handling. In counterpart, the environment often
represents a synchronisation point, that can lead to high synchronous solving pro-
cess with no benefit from distribution, in case of high connected constraint networks.
ERA quickly finds assignments close to the solution, which can be interesting for
repairing issues in optimisation problems. One major flaw of this self-organising
approach is the redundant usage of random choices (for choosing the action to do,
and then to choose a cell), which produce a non guided method, close to random
walk, and non complete. Contrary to all the distributed algorithm that have been
presented, ERA requires a resource shared by the agents: the grid. It can be split,
but it may require a lot of messages for update and consistency check. Finally, con-
cerning termination, ERA requires a time limit (tmax) which is as difficult to set as
the upper bound of DBA, since it is strongly problem dependant.

Algorithm 6: ERA Outline

J. Liu et al. / Artificial Intelligence 136 (2002) 101–144 111

Fig. 5. The violation numbers are updated, when agent a1 moves to a new position by executing a least-move
behavior.

2.1.4. Local reactive behaviors
In order to reach a solution state, the agents will select and execute some predefined

local reactive behaviors, namely, better-move, least-move, and random-move. Later in
Section 4, we will investigate the effectiveness of these reactive behaviors by examining
the performance of the ERA system with behavior prioritization and/or different selection
probabilities.

2.1.4.1. least-move. An agent moves to a minimum-position with a probability of least-
p. If there exists more than one minimum-position, we let the agent choose the first one on
the left of the row. The least-move behavior can be expressed as follows:

ψ−l (x, y) = ϕ(y). (2)

Note that in this function, the result will not be affected by the current x , and the number
of computational operations to find the position for each i is |Di | − 1.

Example 2.3. Fig. 5 shows that when agent a1 performs a least-move, it will first compute
ψ−l (2,1) = ϕ(1) = 5, and thereafter move to (5,1).

2.1.4.2. better-move. An agent moves to a position that has a smaller violation number
than its current position with a probability of better-p. It will randomly select a position and
then compare its violation number to decide whether or not it should move to this position.
We use function Random(k) to get a random number of uniform distribution between 1
and k. This behavior can be defined using function ψ−b:

ψ−b =
{

x, when e(Random(|Dy |), y).violation! e(x, y).violation,
Random(|Dy |), when e(Random(|Dy |), y).violation< e(x, y).violation.

(3)

Although it may not be the best choice for the agent, the computational cost required
for this behavior is much less than that of least-move. Only two operations are involved for
deciding this move, i.e., producing a random number and performing a comparison. This
behavior can readily find a position to move to especially when the agent is currently at a
larger violation position.
As will be shown in Section 4, the better-move behavior plays an important role in

bringing down the number of global constraint violations in a few time steps.

Example 2.4. Fig. 6 shows that when agent a1 performs a better-move, it will com-
pute ψ−b(2,1). Suppose that Random(6) = 3(|D1| = 6). Thus, ψ−b(2,1) = 3, since
e(2,1).violation> e(3,1).violation. The new assignment will become 〈3,2,4〉. Although

112 J. Liu et al. / Artificial Intelligence 136 (2002) 101–144

Fig. 6. The violation numbers are updated, when agent a1 moves to a new position by executing a better-move
behavior.

Fig. 7. The violation numbers are updated, when agent a1 moves to a new position by executing a random-move
behavior.

this assignment is not an exact solution, it is a better approximate solution than the as-
signment of 〈2,2,4〉 as in Fig. 5, because the new state has only one constraint, X1 > X3,
unsatisfied.

2.1.4.3. random-move. An agent moves randomly with a probability of random-p.
random-p will be relatively smaller than the probabilities for selecting better-move and
least-move behaviors. It is somewhat like a random-walk in local search. For the same
reason as in local search, random-move is necessary because without randomized moves
the system will get stuck in local-optima, that is, all the agents are at minimum-positions,
but not all of them at zero-positions. In the state of local-optima, no agent will move to a
new position if using the behaviors of better-move and least-move alone. Thus, the agents
will lose their chance of finding a solution if without any techniques to avoid getting stuck
in local-optima.
random-move can be defined using function ψ−r :

ψ−r (x, y) = Random(|Dy |). (4)

Example 2.5. Fig. 7 shows that when agent a1 performs a random-move, it will randomly
produce a number. If Random(6) = 1, it will move to (1,1). If Random(6) = 3, it will
move to (3,1).

2.1.5. System schedule
The multi-agent system proposed in this paper is concurrent and discrete in nature, with

respect to its space, time, and state space. In the present simulated implementation, the
system will use a discrete clock to synchronize its operations, as shown in Fig. 8. It works
as follows:

• time step= 0: The system is initialized. We place n agents into the environment, a1 in
row1, a2 in row2, . . . , an in rown. The simplest way to place the agents is to randomly
select positions. That is, for ai , we set a position of (Random(|Di |), i).

• time step ← time step + 1: For each time step, which means one unit increment of
the system clock, all agents will have a chance to decide their moves, that is, whether
to move or not and where to move, and then move synchronously.

112 J. Liu et al. / Artificial Intelligence 136 (2002) 101–144

Fig. 6. The violation numbers are updated, when agent a1 moves to a new position by executing a better-move
behavior.

Fig. 7. The violation numbers are updated, when agent a1 moves to a new position by executing a random-move
behavior.

this assignment is not an exact solution, it is a better approximate solution than the as-
signment of 〈2,2,4〉 as in Fig. 5, because the new state has only one constraint, X1 > X3,
unsatisfied.

2.1.4.3. random-move. An agent moves randomly with a probability of random-p.
random-p will be relatively smaller than the probabilities for selecting better-move and
least-move behaviors. It is somewhat like a random-walk in local search. For the same
reason as in local search, random-move is necessary because without randomized moves
the system will get stuck in local-optima, that is, all the agents are at minimum-positions,
but not all of them at zero-positions. In the state of local-optima, no agent will move to a
new position if using the behaviors of better-move and least-move alone. Thus, the agents
will lose their chance of finding a solution if without any techniques to avoid getting stuck
in local-optima.
random-move can be defined using function ψ−r :

ψ−r (x, y) = Random(|Dy |). (4)

Example 2.5. Fig. 7 shows that when agent a1 performs a random-move, it will randomly
produce a number. If Random(6) = 1, it will move to (1,1). If Random(6) = 3, it will
move to (3,1).

2.1.5. System schedule
The multi-agent system proposed in this paper is concurrent and discrete in nature, with

respect to its space, time, and state space. In the present simulated implementation, the
system will use a discrete clock to synchronize its operations, as shown in Fig. 8. It works
as follows:

• time step= 0: The system is initialized. We place n agents into the environment, a1 in
row1, a2 in row2, . . . , an in rown. The simplest way to place the agents is to randomly
select positions. That is, for ai , we set a position of (Random(|Di |), i).

• time step ← time step + 1: For each time step, which means one unit increment of
the system clock, all agents will have a chance to decide their moves, that is, whether
to move or not and where to move, and then move synchronously.

Gauthier Picard Distributed Constraint Processing 34

Introduction ABT and Extensions Distributed Local Search Synthesis References

Environment, Reactive rules and Agents (ERA) [LIU et al., 2002] (cont.)

Remarks
The environment is the communication medium

3 There is no asynchronous mechanisms and message handling
7 Synchronisation point: high synchronous solving process with no benefit from distribution,

in case of high connected constraint networks

3 ERA quickly finds assignments close to the solution→ repairing issues

7 Redundant usage of random choices: non-guided method, close to random walk, and
non complete

7 Termination: ERA requires a time limit (tmax) (problem-dependant)

Gauthier Picard Distributed Constraint Processing 35

Introduction ABT and Extensions Distributed Local Search Synthesis References

Panorama

Algorithm Type Memory Messages Remarks

ABT CSP Exponential – Complete, Static ordering

AWCS CSP Exponential – Complete (only with exponential
space), Reordering, fast

DBA Max-CSP Linear Bounded Incomplete, Fast

ERA Max-CSP Polynomial n/a Incomplete, randomness

Table: DCSP and DCOP algorithms

Gauthier Picard Distributed Constraint Processing 36

Introduction ABT and Extensions Distributed Local Search Synthesis References

Using Distributed Problem Solving
Problem and Environment Characteristics

Geographic distribution
I ex: agents are physically distributed, and solving the whole problem is not possible in a

centralised manner

Constraint network topology
I ex: bounded vertex degrees or large constraint graph diameter

Knowledge encapsulation
I ex: privacy preserving, limited knowledge

Dynamics
I ex: rather than solving the whole problem again, only repair sub-problems

Some Applications

Internet of things

Scheduling

Resource allocation, Manufacturing control

Gauthier Picard Distributed Constraint Processing 37

Introduction ABT and Extensions Distributed Local Search Synthesis References

References

DECHTER, R. (2003). Constraint Processing. Morgan Kaufmann.

GLOVER, F. and M. LAGUNA (1997). Tabu Search. Kluwer.

KIRKPATRICK, S., C. GELLAT, and M. VECCHI (1983). “Optimization by Simulated Annealing”. In: Science 220.4598,
pp. 671–680.

LIU, J., H. JING, and Y. Y. TANG (2002). “Multi-agent Oriented Constraint Satisfaction”. In: Artificial Intelligence 136.1,
pp. 101–144.

MAILLER, R. (2005). “Comparing two approaches to dynamic, distributed constraint satisfaction”. In: Proceedings of the
Fourth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’05). ACM Press,
pp. 1049–1056.

MAILLER, R. and V. R. LESSER (2006). “Asynchronous Partial Overlay: A New Algorithm for Solving Distributed
Constraint Satisfaction Problems”. In: Journal of Artificial Intelligence Research 25, pp. 529–576.

MODI, P. J., W. SHEN, M. TAMBE, and M. YOKOO (2005). “ADOPT: Asynchronous Distributed Constraint Optimization
with Quality Guarantees”. In: Artificial Intelligence 161.2, pp. 149–180.

MORRIS, P. (1993). “The Breakout Method for Escaping from Local Minima”. In: AAAI, pp. 40–45.

YOKOO, M. (2001). Distributed Constraint Satisfaction: Foundations of Cooperation in Multi-Agent Systems. Springer.

Gauthier Picard Distributed Constraint Processing 38

	Introduction
	ABT and Extensions
	Distributed Local Search
	Synthesis
	References

