Distributed Constraint Processing
An Introduction

Gauthier Picard

ONERA/DTIS

gauthier.picard@onera.fr

— Some contents taken from OPTMAS 2011 and OPTMAS-DCR 2014 Tutorials—

mailto:gauthier.picard@onera.fr
http://profs.scienze.univr.it/~farinelli/optmas11Tutorial/
http://www.cs.nmsu.edu/~wyeoh/optmas-dcr2014/docs/tutorial.pdf

Contents

Introduction
Constraint Satisfaction Problems
Multi-Agent Approaches to DisCSP

ABT and Extensions
Asynchronous Algorithms for DisCSP
ABT
AWCS

Distributed Local Search
Classical Centralised LS Algorithms
Distributed Breakout Algorithm (DBA)
Environment, Reactive rules and Agents (ERA)

Synthesis
Panorama
Using Distributed Problem Solving

Gauthier Picard Distributed Constraint Processing 2

Introduction
©000000000

Introduction

Motivations

m Multi-agent systems are a way to model decentralised problem solving (privacy,
distribution)

m Agents, having personal goals and constraints, negotiate as to reach a global equilibrium
= distributed problem solving using agents

Approaches

m Classical CSP solver extensions

m Classical local search solver extensions

Gauthier Picard Distributed Constraint Processing 3

Introduction
0@00000000

Cooperative Decentralized Decision Making

m Decentralised Decision Making

» Agents have to coordinate to perform best actions
m Cooperative settings

» Agents form a team — best actions for the team
m Why DDM in cooperative settings is important

Surveillance (target tracking, coverage)

» Robotics (cooperative exploration)

» Autonomous cars (cooperative traffic management)
>

>

v

Scheduling (meeting scheduling)
Rescue Operation (task assignment)

Gauthier Picard Distributed Constraint Processing 4

Introduction
00®0000000

Distributed Constraint Optimisation Problems (DCOPs) for DDM

Why DCOPs for Cooperative DDM?
m Well defined problem

» Clear formulation that captures most important aspects
» Many solution techniques

» Optimal: ABT, ADOPT, DPORP, ...
» Approximate: DSA, MGM, Max-Sum, ...

m Solution techniques can handle large problems
» compared for example to sequential decision making (MDP, POMDP)

Gauthier Picard Distributed Constraint Processing 5

Introduction
000®000000

Modeling Problems as DCOP

Target Tracking Meeting Scheduling
P
P
-
®
m Why decentralize m Why decentralize
» Robustness to failure and message » Privacy

Gauthier Picard Distributed Constraint Processing 6

Introduction
0000®00000

Target Tracking as a DCOP

m Variables — Cameras {L, R} {L,R}
m Domains — Camera actions

» look left, look right
m Constraints

» Overlapping cameras
» Related to targets

» Diabolik, Eva
m Maximise sum of constraints @

{L, R}

Gauthier Picard Distributed Constraint Processing 7

Introduction
00000@0000

Meeting Scheduling as a DCOP

Window13:00 — 20:00
Duration 1h

Window 15:00 — 18:00
Duration 2h

Gauthier Picard Distributed Constraint Processing 8

Introduction
00000@0000

Meeting Scheduling as a DCOP

(13 —20] [15-18]

[15 — 18]
16:00

[15-18]
16:00

------- Equals (Hard)
[13 -20]

Preference (Soft) 19:00

Gauthier Picard Distributed Constraint Processing 8

Introduction
0000008000

Benchmarking problems

Motivations
m Analysis of complexity and optimality is not enough
m Need to empirically evaluate algorithms on the same problem

Graph coloring

m Simple to formalise very hard to solve
» Well known parameters that influence complexity
» Number of nodes, number of colors, density (number of link/number of nodes)
m Many versions of the problem
» CSP, MaxCSP, COP

Gauthier Picard Distributed Constraint Processing 9

Introduction
0000000800

Graph Coloring

m Network of nodes

m Nodes can take on various colors
m Adjacent nodes should not have the same color
» If it happens this is a conflict

CSP

Gauthier Picard Distributed Constraint Processing

Introduction
0000000800

Graph Coloring

m Network of nodes

m Nodes can take on various colors
m Adjacent nodes should not have the same color
» If it happens this is a conflict

CSP No

Gauthier Picard Distributed Constraint Processing 10

Introduction
0000000080

Graph Coloring - MaxCSP

m Optimization Problem
m Natural extension of CSP
m Minimise number of conflicts

Gauthier Picard Distributed Constraint Processing 11

Weighted Graph Coloring - COP

m Optimization Problem
m Conflicts have a weight
m Maximise the sum of weights of violated constraints

Gauthier Picard Distributed Constraint Processing 12

Introduction
®0

Constraint Satisfaction Problems [pechrer, 2003]

Definition (CSP)
A CSP is a triplet (X, D, C') such as:

m X = {x1,...,2z,} is the set of variables to instantiate.

m D={D,...,D,} is the set of domains. Each variable z; is related to a domain of
value.

m C = {c1,...,c;} is the set of constraints, which are relations between some variables

from X that constrain the values the variables can be simultaneously instantiated to.

Definition (Solution to a CSP)

A solution to a CSP is a complete assignment of values from D to variables from X such that
every constraint in C'is satisfied.

Gauthier Picard Distributed Constraint Processing 13

Introduction
oe

Issues in CSP

Classical CSPs
m Constraint satisfaction is NP-complete in general
m Constraints are generally expressed as binary constraints

m The topology of a constraint-based problem can be represented by a constraint network,
in which vertexes represent variables and edges represent binary constraints between
variables

Extensions
m Distribution : variables, constraints
> ex.: constraint ¢; belongs to stakeholder j, ¢(c;) = j (or belongs(c;, 7))

m Dynamics : adding removing variables and/or constraints at runtime

Gauthier Picard Distributed Constraint Processing 14

Introduction
.

Multi-Agent Approaches to CSP

m Complete and asynchronous solvers for combinatorial problems, within the DisCSP
framework, such as Asynchronous Backtracking (ABT) or Asynchronous
Weak-Commitment Search (AWCS)

m Distributed local search methods, such as Distributed Breakout Algorithm (DBA) or
Environment, Reactive rules and Agents (ERA) approach

Gauthier Picard Distributed Constraint Processing 15

ABT and Extensions
00

Asynchronous Algorithms for DisCSP

ldea
m Inspired by classical centralised algorithms to solve CSP

m Each agent is responsible for assigning one (or several) variables
m Agents propose values to some other agents (depending on the organisation i.e.
constraint network)

Main algorithm: Asynchronous backtracking (ABT) [Yokoo, 2001]
m Agents will perform a distributed version of the backtracking procedure

m ABT is complete
m Extensions exist to handle dynamics

Definition (DisCSP or DCSP)
A DisCSP (or DCSP) is a 5-uplet (A, X, D, C, ¢) where (X, D, C) is a CSP, A is a set of
agents and ¢ : X — A is a function assigning variables from X to agents from A.

Gauthier Picard Distributed Constraint Processing

ABT and Extensions
oe

Centralised Backtracking

i+ 0

Df <+~ D;

while 0 <i < ndo

x; < null

0k? < false

while not ok? and D} not empty do
a < a value from D}
remove a from D)

if a is in conflict with {xo,...,x;_1 } then
Xi<—a

0k? < true

end
end
if x; is null then backtrack

| i+—i—1

else

i—i+1

D: < D,‘
end

end

Algorithm 1: A classical centralised backtracking search method

Gauthier Picard Distributed Constraint Processing 17

ABT and Extensions
[Jelelelelelelele)

Asynchronous Backtracking (ABT) [vokoo, 2001]

First complete asynchronous algorithm for DisCSP solving
Asynchronous:

> All agents active, take a value and inform
» No agent has to wait for other agents

Total order among agents: to avoid cycles
» i < j < k means that: ¢ more priority than j, j more priority than k&

Constraints are directed, following total order

ABT plays in asynchronous distributed context the same role as backtracking in
centralized

Gauthier Picard Distributed Constraint Processing 18

ABT and Extensions
0®0000000

ABT: Directed Constraints

m Directed: from higher to lower priority agents
m Higher priority agent (j) informs the lower one (k) of its

assignment
m Lower priority agent (k) evaluates the constraint with its own
assignment Cik
» If permitted, no action
> else it looks for a value consistent with j @

» |f it exists, k takes that value
> else, the agent view of k is a nogood, backtrack

Gauthier Picard Distributed Constraint Processing 19

ABT and Extensions
0®0000000

ABT: Directed Constraints

m Directed: from higher to lower priority agents
m Higher priority agent (j) informs the lower one (k) of its

assignment
m Lower priority agent (k) evaluates the constraint with its own
assignment Cik
» If permitted, no action
> else it looks for a value consistent with j @

» |f it exists, k takes that value
> else, the agent view of k is a nogood, backtrack

generates nogoods: eliminate values of k

Gauthier Picard Distributed Constraint Processing 19

ABT and Extensions
00@000000

ABT: Nogoods

Definition (Nogood)
Conjunction of (variable, value) pairs of higher priority agents, that removes a value of the
current one

Example
m z #vy,d, =d, ={a,b}, x higher than y

m When [z < a] arrives to y, this agent generates the nogood [z = a = y # a] that
removes value a of d,

m If z changes value, when [x < b] arrives to y, the nogood [z = a = y # al is
eliminated, value a is again available and a new nogood removing b is generated

Gauthier Picard Distributed Constraint Processing 20

ABT and Extensions
000®00000

ABT: Nogood Resolution

m When all values of variable y are removed, the conjunction of the left-hand sides of its
nogoods is also a nogood

m Resolution: the process of generating the new nogood

Example
B z#y z#y dy =dy =d, = {a,b}, z, z higher than y
r=a=y#a x =a A z = bis a nogood
z=b=y#b x = a = z # b (assuming x higher than z)

Gauthier Picard Distributed Constraint Processing 21

ABT and Extensions
0000®0000

How ABT works

m ABT agents: asynchronous action, spontaneous assignment
m Assignment: j takes value a, j informs lower priority agents

m Backtrack: k has no consistent values with high priority agents, k resolves nogoods and
sends a backtrack message

m New links: j receives a nogood mentioning ¢, unconnected with 5 ; 7 asks ¢ to set up a
link
m Stop: “no solution” detected by an agent, stop

m Solution: when agents are silent for a while (quiescence), every constraint is satisfied
— solution; detected by specialized algorithms

Gauthier Picard Distributed Constraint Processing 22

ABT and Extensions
000008000

ABT: Messages

Gauthier Picard Distributed Constraint Processing 23

ABT and Extensions
000008000

ABT: Messages

» jinforms k that it takes value a

Gauthier Picard Distributed Constraint Processing 23

ABT and Extensions
000008000

ABT: Messages

[| :

» i informs k that it takes value a
m Ngdk = j,i=a=j#b)

» all £ values are forbidden

» [requests j to backtrack

> [forgets j value

» [k takes some value

» 4 may detect obsolescence

Gauthier Picard Distributed Constraint Processing

)

23

ABT and Extensions
000008000

ABT: Messages

[| :

» i informs k that it takes value a
m Ngdk = j,i=a=j#b)

» all £ values are forbidden

» [requests j to backtrack

> [forgets j value

» [k takes some value

» 4 may detect obsolescence

B Addl(j — i):

» set alink from i to j, to know ¢ value

Gauthier Picard Distributed Constraint Processing

)

23

ABT and Extensions
000008000

ABT: Messages

[| :
» i informs k that it takes value a
m Ngdk = j,i=a=j#b)
» all k values are forbidden e
» [requests j to backtrack
> [forgets j value
» [k takes some value
» 4 may detect obsolescence

m Addl(j — i): @
» set alink from i to j, to know ¢ value

m Stop:
» there is no solution

)

Gauthier Picard Distributed Constraint Processing 23

Gauthier Picard

ABT and Extensions
000000800

ABT Procedures

when received (ok?, (x;, d;)) do — (i)
revise agent_view;
check_agent_view;

end do;

when received (nogood, x;, nogood) do — (ii)
record nogood as a new constraint;
when nogood contains an agent x, that is not its neighbor
do request x; to add x; as a neighbor,
and add x, to its neighbors; end do;
old value < current value; check agent_view;
when old_value = current value do
send (ok?, (x/, current_value)) to x;; end do; end do;

procedure check agent view
when agent view and current value are not consistent do
if no value in D, is consistent with agent view then backtrack;
else sclect d € D; where agent view and d are consistent;
current value < d;
send (ok?, (x;, d)) to neighbors; end if; end do;

procedure backtrack
generate a nogood V' — (iii)
when I is an empty nogood do
broadcast to other agents that there is no solution,
terminate this algorithm; end do;
select (x;, d;) where x; has the lowest priority in a nogood;
send (nogood, x;, V) to x;;
remove (x;, d;) from agent view;
check_agent_view;

Algorithm 2: ABT Procedures

Distributed Constraint Processing

@%k?, (X2,2))

agent_view
{X1,1),X2,2)}

X
(0k?,(X1, 1))

(a)

add neighbor request

new link

‘a ES

agent_view

{X1, D}

(nogood,
{(X1,1),(X2,2)})

24

ABT and Extensions
000000080

ABT: Correctness and Completeness

m Correctness
» silent network < all constraints are satisfied

m Completeness
» ABT performs an exhaustive traversal of the search space
» Parts not searched: those eliminated by nogoods
» Nogoods are legal: logical consequences of constraints
» Therefore, either there is no solution = ABT generates the empty nogood, or it finds a
solution if exists

Gauthier Picard Distributed Constraint Processing 25

ABT and Extensions
00000000e

ABT: Remarks

m Fixed ordered organisation
» Agents only communicate with agents with lower priority for ok?
» Agents only communicate with the agent with direct higher priority for nogood

m No termination procedure is given (but it is easily implemented using Dijkstra’s tokens)
m Really distributable
m What if ¢ disappears?...

Extensions and Filiation
m Changing ordering in every conflict with AWCS [Yokoo, 2001]

m Satisfaction — Optimisation with ADOPT (Asynchronous B&B) [Mobi et al., 2005] or APO
[MAILLER and LESSER, 2006]

m Adding new agents at runtime in DynAPO [MaILLER, 2005]

Gauthier Picard Distributed Constraint Processing 26

ABT and Extensions
°

Asynchronous Weak-Commitment Search (AWCS) [vokoo, 2001

procedure check_agent_view
when agent_view and current_value are not consistent do
if no value in D; is consistent with agent_view then backtrack;

else select d € D; where agent_view and d are consistent Xl (0) O (0) O

and d minimizes the number of constraint violations
with lower priority agents; — (i) X2 (0) O (0) O
current value < d;
send (ok?, (x;, d, current_priority)) to neighbors; X3 (O) O (O) O

end if; end do; X4 (0) O (1) O
rocedure backtrack
P generate a nogood V/; (a) (b)
when ' is an empty nogood do
broadcast to other agents that there is no solution,
terminate this algorithm; end do;
when V is a new nogood do — (ii)
send V' to the agents in the nogood;
current_priority < 1+ p,.., (0) O (0) O
where p,,,, is the maximal priority value of neighbors;
select d € D; where agent view and d are consistent, (0) O (O) O
and d minimizes the number of constraint violations
with lower priority agents; (2) O (2) O
current value < d;

send (ok?, (x;, d, current_priority)) to neighbors; end do; (1) O (1) O
Algorithm 3: AWCS Procedures (©) (d

Gauthier Picard Distributed Constraint Processing 27

Distributed Local Search
°

Distributed Local Search Approaches

Local Search (LS)

LS algorithms explore the search space from state to state

Always tend to improve the current state of the system

Can naturally handle dynamics (adding constraints, changing values)
Time efficient

Not complete and require some subtle parameter tuning

choose an initial assignment s(0)

while s(7) not terminal do
select an acceptable move m(t) to another assignment
apply move m(t) to reach s(r + 1)
ti=t+1

end

Algorithm 4: A generic centralised local search algorithm

Gauthier Picard Distributed Constraint Processing 28

Distributed Local Search
.

Classical Centralised LS Algorithms

Common points
m Initial point (ex: randomly chosen)
m Termination criterion (ex: limit time, § improvement)
m Acceptable move (ex: +e¢)

Famous LS Methods
m Tabu search [GLovER and LAGUNA, 1997]
m Simulated annealing [KirRkpATRICK et al., 1983]
m lterative Breakout method [Morris, 1993]

Gauthier Picard Distributed Constraint Processing 29

Distributed Local Search
o000

Distributed Breakout Algorithm (DBA)

wait_ok? mode — (i)
when received (ok?, x;, d;) do
add (x;, d;) to agent view;
when received ok? messages from all neighbors do
send_improve; X1
goto wait_improve mode; end do;
goto wait_ok mode; end do;

procedure send_improve X2
current_eval < evaluation value of current value;

my_improve < possible maximal improvement;

newvalue < the value which gives the maximal improvement; X3
send (improve, x;, my_improve, current_eval) to neighbors;

wait_improve? mode — (ii)
when received (improve, x;, improve, eval) do
record this message;
when received improve? messages from all neighbors do
send_ok; clear agent_view; X1
goto wait_ok mode; end do;
goto wait_improve mode; end do;
procedure send_ok X2
when its improvement is largest among neighbors do
current value < new value; end do;
when it is in a quasi-local-minimum do X3
increase the weights of constraint violations; end do;
send (ok?, x;, current_value) to neighbors;

Algorithm 5: DBA Message Handler

Gauthier Picard Distributed Constraint Processing 30

Distributed Local Search
o000

Distributed Breakout Algorithm (DBA) (cont.)

Principles of DBA [Yokoo, 2001]

m Distribution difficulties:
(i) if two neighbouring agents concurrently change their value, the system may oscillate
(ii) detecting the fact that the whole system is trapped in local minimum requires the agents to
globally exchange data
m DBA answers:
(i) for a given neighbourhood, only the agent that can maximally improve the evaluation value
is given the right to change its value
(i) agents only detects quasi-local-minimum, which is a weaker local-minimum that can be
detected only by local interactions

Gauthier Picard Distributed Constraint Processing 31

Distributed Local Search
o000

Distributed Breakout Algorithm (DBA) (cont.)

Remarks
m Distributed version of the iterative breakout algorithm

m Two-mode behaviour alternating between exchange of potential improvement and
exchange of assignments

v/ There is no order over the agents society — neighbourhoods

m The system halts if a solution is found or if the weight of constraints have reached a
predefined upper bound

— the only difficult parameter to set
X DBA is not complete
v/ DBA is able to detect the termination or a global solution only by reasoning on local data.

Gauthier Picard Distributed Constraint Processing 32

Distributed Local Search
000

Environment, Reactive rules and Agents (ERA) [Liu et al., 2002]

Components

m A discrete grid environment, that is used as a communication medium
m Agents that evolves in some regions of the grid (their domain)
» Agents move synchronously
» Agents cannot move in the domain of other agents, but can mark it with the number of

potential conflicts
» These marks represents therefore the number of violated constraints if an agent chooses

the marked cell
m Rules (moves) that agent follow to reach an equilibrium
» 3 possible actions

> least-move: the next cell is the one with minimum cost

> petter-move: the next cell is randomly chosen and if it has less conflicts than the actual one the
agent moves else the agent rests

» random-move: the next cell is randomly chosen

» A decision consists in a random Monte-Carlo choice of the action to perform

Gauthier Picard Distributed Constraint Processing 33

Distributed Local Search
000

Environment, Reactive rules and Agents (ERA) (L etal, 2002 (cONt.)

<0

initialise the grid to O violation in each cell; foreach agent i do x[1 Y1 [1]oJo] x[1 T2t o) o]
| randomly move to a cell of row i M onn o ’“’-‘"Mﬁ» x:[o[0)o]o

end xs[o 1 [1] xsfo]ololo) 1]

while ¢ < #,,,, and no solution do
foreach agent i do
select a move behaviour

.. x[12)1]1]o]o] x[1[1J1]o]o]
compute new position Mo onn albetterin::s» RO
decrease markers in all cells with past violations A Rnnon : x;[0 o 1) 1]
increase markers in all cells with new violations

end
tt+1
end x[12)1]1]o]o] x,)2]1]1JoJo]
NMoon Mm» NMoonmn
Algorithm 6: ERA Outline x[o [[1 [0)1] : x) 1]

Gauthier Picard Distributed Constraint Processing 34

Distributed Local Search
000

Environment, Reactive rules and Agents (ERA) (L etal, 2002 (cONt.)

Remarks
m The environment is the communication medium

v/ There is no asynchronous mechanisms and message handling
X Synchronisation point: high synchronous solving process with no benefit from distribution,
in case of high connected constraint networks

v/ ERA quickly finds assignments close to the solution — repairing issues

X Redundant usage of random choices: non-guided method, close to random walk, and
non complete

X Termination: ERA requires a time limit (£,,,42) (problem-dependant)

Gauthier Picard Distributed Constraint Processing 35

Synthesis
°

Panorama
Algorithm Type Memory Messages Remarks
ABT CSP Exponential — Complete, Static ordering
AWCS CSP Exponential - Complete (only with exponential
space), Reordering, fast
DBA Max-CSP Linear Bounded Incomplete, Fast
ERA Max-CSP Polynomial n/a Incomplete, randomness

Table: DCSP and DCOP algorithms

Gauthier Picard Distributed Constraint Processing 36

Synthesis
°

Using Distributed Problem Solving

Problem and Environment Characteristics
m Geographic distribution

» ex: agents are physically distributed, and solving the whole problem is not possible in a
centralised manner

m Constraint network topology
P ex: bounded vertex degrees or large constraint graph diameter
m Knowledge encapsulation
» ex: privacy preserving, limited knowledge
m Dynamics
» ex: rather than solving the whole problem again, only repair sub-problems

Some Applications

m Internet of things
m Scheduling
m Resource allocation, Manufacturing control

Gauthier Picard Distributed Constraint Processing 37

References

References

DECHTER, R. (2003). Constraint Processing.
GLOVER, F. and M. LAGUNA (1997). Tabu Search.
KIRKPATRICK, S., C. GELLAT, and M. VECCHI (1983). “Optimization by Simulated Annealing”.

Liu, J., H. JING, and Y. Y. TANG (2002). “Multi-agent Oriented Constraint Satisfaction”.

MAILLER, R. (2005). “Comparing two approaches to dynamic, distributed constraint satisfaction”.

MAILLER, R. and V. R. LESSER (2006). “Asynchronous Partial Overlay: A New Algorithm for Solving Distributed
Constraint Satisfaction Problems”.

Mobl, P. J., W. SHEN, M. TAMBE, and M. YOKOO (2005). “ADOPT: Asynchronous Distributed Constraint Optimization
with Quality Guarantees”.

MORRIS, P. (1993). “The Breakout Method for Escaping from Local Minima”.

o O D D@ DPe

Yokoo, M. (2001). Distributed Constraint Satisfaction: Foundations of Cooperation in Multi-Agent Systems.

Gauthier Picard Distributed Constraint Processing 38

	Introduction
	ABT and Extensions
	Distributed Local Search
	Synthesis
	References

