Optimisation sous contraintes distribuée une introduction

Gauthier Picard

Institut Henri Fayol, MINES Saint-Etienne, France Laboratoire Hubert Curien UMR CNRS 5516, France picard@emse.fr

Menu du jour

Modèles et définitions

Méthodes par recherche

Méthodes par inférence

Extensions au modèle classique

Applications

Synthèse

Menu du jour

Modèles et définitions

Méthodes par recherche

Méthodes par inférence

Extensions au modèle classique

Applications

Synthèse

Cadre du raisonnement

Cadre du raisonnement

*x*_{*i*}?

Cadre du raisonnement sous contraintes

*x*_{*i*}?

« je suis satisfait de la valeur x_i »

Cadre du raisonnement sous contraintes distribué

« je suis satisfait de la valeur x_i »

$$x_j$$
 ?

« l'agent i est d'accord avec l'agent j »

Cadre du raisonnement sous contraintes distribué

$$x_i$$
?

 x_j ?

« je suis satisfait de la valeur x_i »

« l'agent i est d'accord avec l'agent j »

Comment les agents peuvent prendre leur décisions de manière autonome de manière coordonnée, sans contrôle externe?

Cadre du raisonnement sous contraintes distribué

$$x_i$$
?

 x_j ?

« je suis satisfait de la valeur x_i »

« l'agent i est d'accord avec l'agent j »

Comment les agents peuvent prendre leur décisions de manière autonome de manière coordonnée, sans contrôle externe?

 \Rightarrow Prise de décision décentralisée

Les agents doivent se coordonner pour effectuer les meilleures décisions

■ Les agents forment une équipe → meilleures décisions pour l'équipe

Problèmes d'optimisation sous contraintes distribuée

Définition (DCOP)

Un problème d'optimisation sous contraintes distribué (ou DCOP pour Distributed Constraint Optimization Problem) est un tuple $P = \langle \mathcal{A}, \mathcal{X}, \mathcal{D}, \mathcal{C}, \mu, f \rangle$, où :

- $\mathcal{A} = \{a_1, \dots, a_m\}$ est l'ensemble d'agents
- $\mathcal{X} = \{x_1, \dots, x_n\}$ sont les variables appartenant aux agents
- $\mathcal{D} = \{\mathcal{D}_{x_1}, \dots, \mathcal{D}_{x_n}\}$ est un ensemble de domaines finis tels que la variable x_i prend ses valeurs dans $\mathcal{D}_{x_i} = \{v_1, \dots, v_{|\mathcal{D}_{x_i}|}\}$
- $C = \{c_1, ..., c_k\}$ est un ensemble de contraintes souples, où chaque c_i définit un coût $\in \mathbb{R} \cup \{\infty\}$ pour chaque combinaison d'affectation de valeurs au sous-ensemble de variables impliquées
- $\blacksquare \ \mu: \mathcal{X} \to \mathcal{A}$ est une application associant les variables à leur agent
- $f : \prod \mathcal{D}_{x_i} \to \mathbb{R}$ est une fonction objectif, représentant le coût global d'une affectation de valeurs aux variables (en général $f = \sum_i c_i$)

Problèmes d'optimisation sous contraintes distribuée (suite.)

Définition (Solution)

Une solution à un DCOP P est une affectation de valeurs à toutes les variables. Une solution est dite optimale si elle minimise f.

Les travaux dans le domaine des DCOP vont principalement tâcher à...

- (i) modéliser des problèmes sous forme de DCOP
- (ii) proposer des extensions à ce modèle canonique s'il n'est pas assez expressif
- (iii) concevoir des algorithmes de résolution, c'est-à-dire des méthodes cherchant une solution, de manière efficace, et ceci de manière distribuée

Problèmes d'optimisation sous contraintes distribuée (suite.)

Exemple

Nous considérerons par la suite le DCOP suivant :

$$\mathcal{A} = \{a_1, a_2, a_3, a_4\}$$
$$\mathcal{X} = \{x_1, x_2, x_3, x_4\}$$
$$\forall x_i \in \mathcal{X}, \mathcal{D}_i = \{a, b\}$$
$$\mathcal{C} = \{c_{12}, c_{13}, c_{23}, c_{24}\} \text{ avec}$$

$$c_{ij} = \begin{cases} 1 \text{ si } x_i = x_j = a \\ 2 \text{ si } x_i \neq x_J \\ 0 \text{ sinon} \end{cases}$$

$$\forall x_i \in \mathcal{X}, \mu(x_i) = a_i$$
$$f = \sum_i c_i$$

Structure et représentation graphique

Comment résoudre un DCOP?

[CERQUIDES et al., 2014; FIORETTO et al., 2018]

Menu du jour

Modèles et définitions

Méthodes par recherche

Méthodes par inférence

Extensions au modèle classique

Applications

Synthèse

Principe

Versions distribuées d'algorithmes de résolution classique

- branch-and-bound
- recherche en largeur d'abord
- ▶ ...

Processus générique

- 1. Considérer les variables dans un ordre prédéfini (arbitraire, issu d'une heuristique quelconque, ou en fonction de leur état courant)
- 2. Considérer des affectations de valeurs des variables de manière itérative
- 3. Si une affectation de valeur ne convient pas
 - ▶ les variables changent elles-mêmes leur valeurs, si possible
 - sinon, demandent aux autres variables de changer les leurs pour obtenir une meilleure solution

Principe

Versions distribuées d'algorithmes de résolution classique

- branch-and-bound
- recherche en largeur d'abord
- ▶ ...

Processus générique

- 1. Considérer les variables dans un ordre prédéfini (arbitraire, issu d'une heuristique quelconque, ou en fonction de leur état courant)
- 2. Considérer des affectations de valeurs des variables de manière itérative
- 3. Si une affectation de valeur ne convient pas
 - ▶ les variables changent elles-mêmes leur valeurs, si possible
 - sinon, demandent aux autres variables de changer les leurs pour obtenir une meilleure solution

\rightarrow Processus de recherche collective de l'espace d'optimisation

Principaux algorithmes

Algorithmes complets

- SyncBB [Нігауама et Yokoo, 1997]
 - version synchrone et distribuée de branch-and-bound
- AFB (Asynchronous Forward Bounding) [GERSHMAN et al., 2009]
 - version asynchrone de SynchBB (verification avec les valeurs des agents au-dessus)
- ADOPT (Asynchronous Distributed OPTimization) [MoDI et al., 2005]
 - ► fonctionne sur un pseudo-arbre
 - nombreuses extensions [Bessiere et al., 2012; GUTIERREZ et al., 2011; SILAGHI et Yoкоо, 2009; YEOH et al., 2008, 2009a,b]
- OptAPO (Optimal Asynchronous Partial Overlay) [Mailler et Graves, 2012]
 - gestion de la cohérence des valeurs par des médiateurs (centralisation partielle)

Méthodes par recherche (suite.)

Principaux algorithmes

Algorithmes incomplets

■ MGM (Maximum Gain Message) [JAIN et al., 2009; MAHESWARAN et al., 2004]

- recherche locale incomplète et synchrone
- ▶ choix aléatoire de valeur puis choix de la valeur améliorant le plus la qualité
- DSA (Distributed Stochastic Algorithm) [ZHANG et al., 2005]
 - recherche locale incomplète et synchrone
 - décision stochastique pour échapper aux minima locaux

Un exemple : ADOPT

Gauthier Picarc

Menu du jour

Modèles et définitions

Méthodes par recherche

Méthodes par inférence

Extensions au modèle classique

Applications

Synthèse

Principe

- Algorithmes de recherche = explorer les affectations de valeurs possibles (de manière systématique pour les algorithmes optimaux, ou stochastique pour d'autres)
- Algorithmes par inférence = établir l'influence de la valeur de chaque variable sur la fonction objectif (i.e. une somme dans le cas d'un DCOP), grâce à la propagation de messages de coûts

Principaux algorithmes

Algorithme complet

- DPOP (Distributed Pseudo-tree Optimization Procedure) [Petcu et Faltings, 2005a]
 - ▶ algorithme synchrone, équivalent à de la programmation dynamique distribuée
 - très nombreuses extensions [KUMAR et al., 2006; LÉAUTÉ, 2011; PETCU et FALTINGS, 2005b, 2006; PETCU et al., 2006]

Algorithmes incomplets

- Max-Sum [Farinelli et al., 2008]
 - fondé sur la propagation de croyances
 - extension pour fournir une borne inférieur [Rogers et al., 2011]
- Action-GDL [VINYALS et al., 2010]
 - ▶ inspiré de la loi de distributivité généralisée (GDL)
 - généralisation de DPOP et Max-Sum avec factorisation de fonctions locales (arbre de jonction)

Exemple : DPOP sur un arbre

Solution optimale :

- nombre de messages linéaire
- taille de messages linéaire

Exemple : DPOP sur un graphe cyclique

Solution optimale :

- nombre de messages liénaire
- taille de messages exponentielle

Menu du jour

Modèles et définitions

Méthodes par recherche

Méthodes par inférence

Extensions au modèle classique

Applications

Synthèse

Extensions au modèle classique

DCOPs multi-objectifs (MO-DCOPs)

- Impliquent plus d'une fonction objective à optimiser simultanément
- Objectifs potentiellement contradictoires
- En général, les coûts ne sont plus des scalaires, mais des vecteurs
- Extensions d'algorithmes classiques :
 - MO-SBB [MEDI et al., 2014]
 - Pseudo-tree Based Algorithm [MATSUI et al., 2012]
 - B-MOMS [Delle Fave et al., 2011]
 - DP-AOF [Окімото et al., 2013]

Extensions au modèle classique (suite.)

DCOPs dynamiques (D-DCOPs)

- Environnements dynamiques évoluant dans le temps
- Les contraintes peuvent changer pendant le processus de résolution des problèmes
- Les agents peuvent disparaître ou apparaître en cours de résolution
- Extensions des principaux algorithmes classiques :
 - Self-stabilizing DPOP (SDPOP) [PETCU et FALTINGS, 2005c]
 - Versions itératives d'ADOPT (I-ADOPT et I-BnB-ADOPT) [УЕОН et al., 2011]
 - Fast Max-Sum (FMS) [RAMCHURN et al., 2010]

Extensions au modèle classique (suite.)

DCOPs asymétriques (A-DCOPs)

- Deux variables de la même contrainte peuvent recevoir des récompenses différentes
- Ne peut pas être représenté naturellement par un DCOP classique
- Ceci nécessite que chaque agent, dont les variables participent à une contrainte, coordonne l'agrégation de leurs utilités individuelles
- Plusieurs algorithmes proposés,
 - SyncABB-2ph, SyncABB-1ph, ACLS, MCS-MGM [GRINSHPOUN et al., 2013]

Extensions au modèle classique (suite.)

DCOPs probabilistes (P-DCOPs)

- L'incertitude de l'état de l'environnement est modélisée par la stochasticité dans les fonctions d'utilité
- Les agents doivent équilibrer l'exploration de l'environnement inconnu et l'exploitation des utilités connues (≡ POMDP) [CASSANDRA et al., 1994]
- Extensions d'algorithmes classiques
 - ▶ 𝔅[DPOP] et SD-DPOP [LÉAUTÉ et FALTINGS, 2011; NGUYEN et al., 2012]
 - U-GDL [STRANDERS et al., 2011].

Menu du jour

Modèles et définitions

Méthodes par recherche

Méthodes par inférence

Extensions au modèle classique

Applications

Synthèse

Applications

Exemples

- Cadre coopératif (mais il existent des extensions pour le cadre compétitif)
- Coordination optimale
- Problèmes naturellement distribués
 - Fonction séparable (ou modèle séparable)
 - En général, graphe de facteurs assez peu dense
- Exigences de qualité
 - dans l'idéal : approche optimale
 - dans la plupart des cas : bornes ou approximation

Exigences de communication

- Approches optimales : souvent coûteuse en nombre ou en taille de messages, et peu robustes à la perte de messages
- Approches non optimales : messages de faible taille et charge de communication ajustable

Applications (suite.) Exemples

[PICARD et al., 2017]

Applications (suite.) Exemples

[RUST et al., 2016]

[RAMCHURN et al., 2015]

Menu du jour

Modèles et définitions

Méthodes par recherche

Méthodes par inférence

Extensions au modèle classique

Applications

Synthèse

Synthèse

- Concepts de bases de la modélisation DCOP
- Les algorithmes principaux de résolution de DCOPs
- Une très large palette de modèles et de méthodes de résolution sont disponibles
 - ▶ optimales (ADOPT, DPOP, ...) ou approchées (Max-Sum, MGM, DSA, ...)
- Autant de techniques aux propriétés spécifiques pour répondre à problèmes réels
- Très bon outil de coordination pour les SMA
- Complémentaire avec d'autres approches par auto-organisation
- Nombreuses pistes de recherche, notamment
 - Déploiement sur des environnements d'exécution distribués et dynamiques [Rust et al., 2017]

Optimisation sous contraintes distribuée une introduction

Gauthier Picard

Institut Henri Fayol, MINES Saint-Etienne, France Laboratoire Hubert Curien UMR CNRS 5516, France picard@emse.fr

Gauthier Picard

Références

- BESSIERE, C., P. GUTIERREZ et P. MESEGUER (2012). "Including Soft Global Constraints in DCOPs". In : Proceedings of the 18th International Conference on Principles and Practice of Constraint Programming (CP'12). Springer, p. 175-190.
- CASSANDRA, A.R., L.P. KAELBLING et M.L. LITTMAN (1994). "Acting Optimally in Partially Observable Stochastic Domains". In : Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI'94). AAAI'94, p. 1023-1028.
- CERQUIDES, J., A. FARINELLI, P. MESEGUER et S. D. RAMCHURN (2014). "A Tutorial on Optimization for Multi-Agent Systems". In : The Computer Journal 57.6, p. 799-824. DOI : 10.1093/comjnl/bxt146.
- CERQUIDES, J., G. PICARD et J.A. RODRÍGUEZ-AGUILAR (2015). "Designing a marketplace for the trading and distribution of energy in the smart grid". In : 14th International Conference on Autonomous Agents and Multiagent Systems (AAMAS'15), p. 1285-1293. URL :

http://www.aamas-conference.org/Proceedings/aamas2015/forms/contents.htm#I4.

DELLE FAVE, F.M., R. STRANDERS, A. ROGERS et N.R. JENNINGS (2011). "Bounded Decentralised Coordination over Multiple Objectives". In : The 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS '11), p. 371-378.

- FARINELLI, A., A. ROGERS, A. PETCU et N. R. JENNINGS (2008). "Decentralised Coordination of Low-power Embedded Devices Using the Max-sum Algorithm". In : International Conference on Autonomous Agents and Multiagent Systems (AAMAS'08), p. 639-646. ISBN : 978-0-9817381-1-6.
- FIORETTO, F., E. PONTELLI et W. YEOH (2018). "Distributed Constraint Optimization Problems and Applications : A Survey". In : Journal of Artificial Intelligence Research 61, p. 623-698.

GERSHMAN, A., A. MEISELS et R. ZIVAN (2009). "Asynchronous Forward Bounding for Distributed COPs". In : J. Artif. Int. Res. 34.1, p. 61-88. ISSN : 1076-9757.

- GLIZE, P. et G. PICARD (2011). "Self-organisation in Constraint Problem Solving". In : Self-organising Software : From Natural to Artificial Adaptation. Springe, p. 347-377. ISBN : 978-3-642-17348-6. DOI : 10.1007/978-3-642-17348-6_14. URL : https://doi.org/10.1007/978-3-642-17348-6_14.
- GRINSHPOUN, T., A. GRUBSHTEIN, R. ZIVAN, A. NETZER et A. MEISELS (2013). "Asymmetric Distributed Constraint Optimization Problems". In : J. Artif. Int. Res. 47.1, p. 613-647. ISSN : 1076-9757. URL : http://dl.acm.org/citation.cfm?id=2566972.2566988.
- GUTIERREZ, P., P. MESEGUER et W. YEOH (2011). "Generalizing ADOPT and BnB-ADOPT". In : Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI'11). AAAI Press, p. 554-559. ISBN : 978-1-57735-513-7. DOI : 10.5591/978-1-57735-516-8/IJCAI11-100. URL : http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-100.

HIRAYAMA, K. et M. YOKOO (1997). "Distributed partial constraint satisfaction problem". In : Principles and Practice of Constraint Programming-CP97. Springer, p. 222-236. ISBN : 978-3-540-69642-1.

JAIN, M., M. TAYLOR, M. TAMBE et M. YOKOO (2009). "DCOPs Meet the Real World : Exploring Unknown Reward Matrices with Applications to Mobile Sensor Networks". In : International Joint Conference on Artificial Intelligence (IJCAI'09), p. 181-186.

KUMAR, A., A. PETCU et B. FALTINGS (2006). "H-DPOP: Using Hard Constraints to Prune the Search Space". In : AAAI Conference on Artificial Intelligence (AAAI'06), p. 325-330.

LÉAUTÉ, T. (2011). "Distributed Constraint Optimization : Privacy Guarantees and Stochastic Uncertainty". PhD Thesis. Lausanne, Switzerland : Ecole Polytechnique Fédérale de Lausanne (EPFL). URL : http://thomas.leaute.name/main/DCOP_privacy_uncertainty_thesis.html.

LÉAUTÉ, T. et B. FALTINGS (2011). "Distributed Constraint Optimization Under Stochastic Uncertainty". In : Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI'11). AAAI Press, p. 68-73. URL : http://dl.acm.org/citation.cfm?id=2900423.2900434.

MAHESWARAN, R.T., J.P. PEARCE et M. TAMBE (2004). "Distributed Algorithms for DCOP : A Graphical-Game-Based Approach". In : Proceedings of the 17th International Conference on Parallel and Distributed Computing Systems (PDCS), p. 432-439.

MAILLER, R. et J. GRAVES (2012). "Solving Distributed CSPs Using Dynamic, Partial Centralization Without Explicit Constraint Passing". In : Proceedings of the 13th International Conference on Principles and Practice of Multi-Agent Systems (PRIMA'10). Springer, p. 27-41. ISBN : 978-3-642-25919-7. DOI : 10.1007/978-3-642-25920-3_3. URL : http://dx.doi.org/10.1007/978-3-642-25920-3_3.

- MEDI, A., T. OKIMOTO et K. INOUE (juil. 2014). "A two-phase complete algorithm for multi-objective distributed constraint optimization". In : 18, p. 573-580.
- MODI, P. J., W. SHEN, M. TAMBE et M. YOKOO (2005). "ADOPT : Asynchronous Distributed Constraint Optimization with Quality Guarantees". In : Artificial Intelligence 161.2, p. 149-180.

NGUYEN, D.T., W. YEOH et H.C. LAU (2012). "Stochastic Dominance in Stochastic DCOPs for Risk-sensitive Applications". In : Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS '12). Valencia, Spain, p. 257-264. ISBN : 0-9817381-1-7, 978-0-9817381-1-6. URL : http://dl.acm.org/citation.cfm?id=2343576.2343613.

OKIMOTO, T., M. CLEMENT et K. INOUE (2013). "AOF-Based Algorithm for Dynamic Multi-Objective Distributed Constraint Optimization". In : Proceedings of the 7th International Workshop on Multi-disciplinary Trends in Artificial Intelligence (MIWAI'13). Springer, p. 175-186. ISBN : 978-3-642-44948-2. DOI : 10.1007/978-3-642-44949-9_17. URL : http://dx.doi.org/10.1007/978-3-642-44949-9_17.

- (2005b). "S-DPOP : Superstabilizing, Fault-containing Multiagent Combinatorial Optimization". In : Proceedings of the National Conference on Artificial Intelligence (AAAI'05), p. 449-454.
- (2005c). "Superstabilizing, Fault-containing Distributed Combinatorial Optimization". In : Proceedings of the 20th National Conference on Artificial Intelligence (AAAI'05). AAAI Press, p. 449-454. ISBN : 1-57735-236-x. URL : http://dl.acm.org/citation.cfm?id=1619332.1619405.
- (2006). "ODPOP : An Algorithm for Open/Distributed Constraint Optimization". In : AAAI.
- PETCU, A., B. FALTINGS et D.C. PARKES (2006). "MDPOP : faithful distributed implementation of efficient social choice problems". In : AAMAS.

- PICARD, G., F. BALBO et O. BOISSIER (2017). "Approches multiagents pour l'allocation de courses à une flotte de taxis autonomes". In : 25es Journées Francophones sur les Systèmes Multi-Agents (JFSMA). Cépaduès, p. 75-84. URL : http://www.cepadues.com/livres/jfsma-2017-cohesion-fondement-propriete-emergente-9782364936027.html. AR=27%.
- RAMCHURN, S. D., A. FARINELLI, K. S. MACARTHUR et N. R. JENNINGS (2010). "Decentralized Coordination in RoboCup Rescue". In : *Comput. J.* 53.9, p. 1447-1461. ISSN : 0010-4620. DOI : 10.1093/comjnl/bxq022. URL : http://dx.doi.org/10.1093/comjnl/bxq022.
- RAMCHURN, Sarvapali D, J.E. FISCHER, Yuki IKUNO, Feng WU, J FLANN et Antony WALDOCK (2015). "A Study of Human-Agent Collaboration for Multi-UAV Task Allocation in Dynamic Environments". In : IJCAI 15.
- ROGERS, A., A. FARINELLI, R. STRANDERS et N.R. JENNINGS (2011). "Bounded approximate decentralised coordination via the max-sum algorithm". In : *Artificial Intelligence* 175.2, p. 730 -759. ISSN : 0004-3702.
 - RUST, P., G. PICARD et F. RAMPARANY (2016). "Using Message-passing DCOP Algorithms to Solve Energy-efficient Smart Environment Configuration Problems". In : International Joint Conference on Artificial Intelligence (IJCAI). AAAI Press.
 - (2017). "On the Deployment of Factor Graph Elements to Operate Max-Sum in Dynamic Ambient Environments". In : Autonomous Agents and Multiagent Systems – AAMAS 2017 Workshops, Best Papers.
 T. 10642. Lecture Notes in Artificial Intelligence (LNAI). Extended Version. Springer, p. 116-137. DOI : 10.1007/978-3-319-71682-4_8.
- SILAGHI, M. C. et M. YOKOO (2009). "ADOPT-ing: unifying asynchronous distributed optimization with asynchronous backtracking". In : Autonomous Agents and Multi-Agent Systems 19.2, p. 89-123. ISSN : 1573-7454. DOI: 10.1007/s10458-008-9069-2. URL: https://doi.org/10.1007/s10458-008-9069-2.

STRANDERS, R., F.M. DELLE FAVE, A. ROGERS et N.R. JENNINGS (2011). "U-GDL: A decentralised algorithm for DCOPs with Uncertainty". Project Report. URL: https://eprints.soton.ac.uk/273037/.

- VINYALS, M., J.A. RODRIGUEZ-AGUILAR et J. CERQUIDES (2010). "Constructing a unifying theory of dynamic programming DCOP algorithms via the generalized distributive law". In : Autonomous Agents and Multi-Agent Systems 22.3, p. 439-464. ISSN : 1573-7454. DOI : 10.1007/s10458-010-9132-7.
- YEOH, W., A. FELNER et S. KOENIG (2008). "BnB-ADOPT : An Asynchronous Branch-and-bound DCOP Algorithm". In : Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS '08). Estoril, Portugal, p. 591-598. ISBN : 978-0-9817381-1-6. URL : http://dl.acm.org/citation.cfm?id=1402298.1402307.
- YEOH, W., P. VARAKANTHAM et S. KOENIG (2009a). "Caching Schemes for DCOP Search Algorithms". In : Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS '09). Budapest, Hungary, p. 609-616. ISBN : 978-0-9817381-6-1. URL : http://dl.acm.org/citation.cfm?id=1558013.1558098.

YEOH, W., X. SUN et S. KOENIG (2009b). "Trading Off Solution Quality for Faster Computation in DCOP Search Algorithms". In : Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI'09), p. 354-360.

YEOH, W., P. VARAKANTHAM, X. SUN et S. KOENIG (2011). "Incremental DCOP Search Algorithms for Solving Dynamic DCOPs". In : The 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS '11), p. 1069-1070. ISBN : 0-9826571-7-X, 978-0-9826571-7-1.

ZHANG, W., G. WANG, Z. XING et L. WITTENBURG (jan. 2005). "Distributed Stochastic Search and Distributed Breakout: Properties, Comparison and Applications to Constraint Optimization Problems in Sensor Networks". In: Artificial Intelligence 161.1-2, p. 55-87. DOI: 10.1016/j.artint.2004.10.004. URL: http://dx.doi.org/10.1016/j.artint.2004.10.004.